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What Is the Signal Processing Toolbox?
This section describes how to begin using the Signal Processing Toolbox. It 
explains how to use this manual and points you to additional books for toolbox 
installation information. 

The Signal Processing Toolbox is a collection of tools built on the MATLAB® 

numeric computing environment. The toolbox supports a wide range of signal 
processing operations, from waveform generation to filter design and 
implementation, parametric modeling, and spectral analysis. The toolbox 
provides two categories of tools:

• Signal processing functions

• Graphical, interactive tools

The first category of tools is made up of functions that you can call from the 
command line or from your own applications. Many of these functions are 
MATLAB M-files, series of MATLAB statements that implement specialized 
signal processing algorithms. You can view the MATLAB code for these 
functions using the statement

type function_name

or by opening the M-file in the MATLAB Editor/Debugger. You can change the 
way any toolbox function works by copying and renaming the M-file, then 
modifying your copy. You can also extend the toolbox by adding your own 
M-files.

Secondly, the toolbox provides a number of interactive tools that let you access 
many of the functions through a graphical user interface (GUI). The GUI-based 
tools provide an integrated environment for filter design, analysis, and 
implementation, as well as signal exploration and editing. For example, with 
the graphical user interface tools you can

• Use the mouse to graphically edit the magnitude response of a filter or 
measure the slope of a signal with onscreen rulers

• Play a signal on your system’s audio hardware by selecting a menu item or 
pressing a corresponding keystroke combination

• Customize the parameters and method of computing the spectrum of a signal



How to Use This Manual
How to Use This Manual
If you are a new user. Begin with Chapter 1, “Signal Processing Basics.” This 
chapter introduces the MATLAB signal processing environment through the 
toolbox functions. It describes the basic functions of the Signal Processing 
Toolbox, reviewing its use in basic waveform generation, filter implementation 
and analysis, impulse and frequency response, zero-pole analysis, linear 
system models, and the discrete Fourier transform.

When you feel comfortable with the basic functions, move on to Chapter 2 and 
Chapter 3 for a more in-depth introduction to using the Signal Processing 
Toolbox.

• Chapter 2, “Filter Design” for a detailed explanation of using the Signal 
Processing Toolbox in infinite impulse response (IIR) and finite impulse 
response (FIR) filter design and implementation, including special topics in 
IIR filter design.

• Chapter 3, “Statistical Signal Processing” for how to use the correlation, 
covariance, and spectral analysis tools to estimate important functions of 
discrete random signals.

Once you understand the general principles and applications of the toolbox, 
learn how to use the interactive tools.

• Chapter 5, “Interactive Tools” for an overview of the interactive GUI 
environment and examples of how to use it for signal exploration, filter 
design and implementation, and spectral analysis.

Finally, see the following chapter for a discussion of various specialized toolbox 
functions.

• Chapter 4, “Special Topics” for a variety of specialized functions including 
filter windows, parametric modeling, resampling, cepstrum analysis, 
time-dependent Fourier transforms and spectrograms, median filtering, 
communications applications, deconvolution, and specialized transforms.

If you are an experienced toolbox user. See Chapter 5, “Interactive Tools” for an 
overview of the interactive GUI environment and examples of how to use it for 
signal viewing, filter design and implementation, and spectral analysis.
xiii
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All toolbox users. Use Chapter 6, “Reference” for locating information on specific 
functions. Reference descriptions include a synopsis of the function’s syntax, as 
well as a complete explanation of options and operation. Many reference 
descriptions also include helpful examples, a description of the function’s 
algorithm, and references to additional reading material.

Use this manual in conjunction with the software to learn about the powerful 
features that MATLAB provides. Each chapter provides numerous examples 
that apply the toolbox to representative signal processing tasks.

Some examples use MATLAB’s random number generation function randn. In 
these cases, to duplicate the results in the example, type

randn('seed',0)

before running the example.



Installation
Installation
To install this toolbox on a workstation, see the MATLAB Installation Guide 
for UNIX. To install the toolbox on a PC or Macintosh, see the MATLAB 
Installation Guide for PC and Macintosh.

To determine if the Signal Processing Toolbox is already installed on your 
system, check for a subdirectory named signal within the main toolbox 
directory or folder.
xv
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Typographical Conventions

To Indicate... This Manual Uses... Example

Example code Monospace type. To assign the value 5 to 
A, enter

A = 5

MATLAB 
output

Monospace type. MATLAB responds with

A =
    5

Function names Monospace type. The cos function finds 
the cosine of each array 
element.

New terms Italics. An array is an ordered 
collection of 
information.

Keys Boldface with an 
initial capital letter.

Press the Return key.

Menu names, 
items, and GUI 
controls

Boldface with an 
initial capital letter.

Choose the File menu.

Mathematical
expressions

Variables in italics. 
Functions, 
operators, and 
constants in 
standard type.

This vector represents 
the polynomial

p = x2 + 2x + 3
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Technical Notations
This manual and the Signal Processing Toolbox functions use the following 
technical notations:

Nyquist frequency One-half the sampling frequency. Most 
toolbox functions normalize this value to 1.

x(1) The first element of a data sequence or 
filter, corresponding to zero lag.

Ω Analog frequency in radians per second.

w Digital frequency in radians per second.

f Digital frequency in Hertz.
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Signal Processing Toolbox Central Features
This chapter describes how to begin using MATLAB and the Signal Processing 
Toolbox for your signal processing applications. It assumes a basic knowledge 
and understanding of signals and systems, including such topics as filter and 
linear system theory and basic Fourier analysis. 

There are many examples throughout the chapter that demonstrate how to 
apply toolbox functions. If you are not already familiar with MATLAB’s signal 
processing capabilities, use this chapter in conjunction with the software to try 
examples and learn about the powerful features available to you.

The Signal Processing Toolbox functions are algorithms, expressed mostly in 
M-files, that implement a variety of signal processing tasks. These toolbox 
functions are a specialized extension of the MATLAB computational and 
graphical environment.

Filtering and FFTs
Two of the most important functions for signal processing are not in the Signal 
Processing Toolbox at all, but are built-in MATLAB functions:

• filter applies a digital filter to a data sequence.

• fft calculates the discrete Fourier transform of a sequence.

The operations these functions perform are the main computational 
workhorses of classical signal processing. Both are described in this chapter. 
The Signal Processing Toolbox uses many other standard MATLAB functions 
and language features, including polynomial root finding, complex arithmetic, 
matrix inversion and manipulation, and graphics tools.

Signals and Systems
The basic entities that toolbox functions work with are signals and systems. 
The functions emphasize digital, or discrete, signals and filters, as opposed to 
analog, or continuous, signals. The principal filter type the toolbox supports is 
the linear, time-invariant digital filter with a single input and a single output. 
You can represent linear time-invariant systems using one of several models 
(such as transfer function, state-space, zero-pole-gain, and second-order 
section) and convert between representations. 
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Key Areas: Filter Design and Spectral Analysis
In addition to its core functions, the toolbox provides rich, customizable support 
for the key areas of filter design and spectral analysis. It is easy to implement 
a design technique that suits your application, design digital filters directly, or 
create analog prototypes and discretize them. Toolbox functions also estimate 
power spectral density and cross spectral density, using either parametric or 
nonparametric techniques. Chapters 2 and 3, respectively, detail toolbox 
functions for filter design and spectral analysis.

There are functions for computation and graphical display of frequency 
response, as well as functions for system identification; generating signals; 
discrete cosine, chirp-z, and Hilbert transforms; lattice filters; resampling; 
time-frequency analysis; and basic communication systems simulation.

Graphical User Interface (GUI)
The power of the Signal Processing Toolbox is greatly enhanced by its 
easy-to-use graphical user interface. The GUI provides an integrated set of 
interactive tools for performing a wide variety of signal processing tasks. These 
tools enable you to use the mouse and menus to manipulate a rich graphical 
environment for signal viewing, filter design and implementation, and spectral 
analysis.

Extensibility
Perhaps the most important feature of the MATLAB environment is that it is 
extensible: MATLAB lets you create your own M-files to meet numeric 
computation needs for research, design, or engineering of signal processing 
systems. Simply copy the M-files provided with the Signal Processing Toolbox 
and modify them as needed, or create new functions to expand the functionality 
of the toolbox.
1-3
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Representing Signals
The central data construct in MATLAB is the numeric array, an ordered 
collection of real or complex numeric data with two or more dimensions. The 
basic data objects of signal processing (one-dimensional signals or sequences, 
multichannel signals, and two-dimensional signals) are all naturally suited to 
array representation.

Vector Representation
MATLAB represents ordinary one-dimensional sampled data signals, or 
sequences, as vectors. Vectors are 1-by-n or n-by-1 arrays, where n is the 
number of samples in the sequence. One way to introduce a sequence into 
MATLAB is to enter it as a list of elements at the command prompt. The 
statement

x = [4 3 7 –9 1]

creates a simple five-element real sequence in a row vector. Transposition 
turns the sequence into a column vector,

x = x'

resulting in

x =
4
3
7
–9
1

Column orientation is preferable for single channel signals because it extends 
naturally to the multichannel case. For multichannel data, each column of a 
matrix represents one channel. Each row of such a matrix then corresponds to 
a sample point. A three-channel signal that consists of x, 2x, and x/π is

y = [x 2*x x/pi]



Representing Signals
This results in

y =

4.0000 8.0000 1.2732
3.0000 6.0000 0.9549
7.0000 14.0000 2.2282
–9.0000 –18.0000 –2.8648
1.0000 2.0000 0.3183
1-5
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Waveform Generation: Time Vectors and Sinusoids
There are a variety of toolbox functions for generating waveforms. Most require 
you to begin with a vector representing a time base. Consider generating data 
with a 1000 Hz sample frequency, for example. An appropriate time vector is

t = (0:.001:1)';

where MATLAB’s colon operator creates a 1001-element row vector that 
represents time running from zero to one second in steps of one millisecond. 
The transpose operator (') changes the row vector into a column; the 
semicolon (;) tells MATLAB to compute but not display the result.

Given t you can create a sample signal y consisting of two sinusoids, one at 50 
Hz and one at 120 Hz with twice the amplitude:

y = sin(2*pi*50*t) + 2*sin(2*pi*120*t);

The new variable y, formed from vector t, is also 1001 elements long. You can 
add normally distributed white noise to the signal and graph the first fifty 
points using

yn = y + 0.5*randn(size(t));
plot(t(1:50),yn(1:50))
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Common Sequences: Unit Impulse, Unit Step, and 
Unit Ramp
Since MATLAB is a programming language, an endless variety of different 
signals is possible. Here are some statements that generate several commonly 
used sequences, including the unit impulse, unit step, and unit ramp functions:

t = (0:.001:1)';
y = [1; zeros(99,1)]; % impulse
y = ones(100,1); % step (filter assumes 0 initial cond.)
y = t; % ramp
y = t.^2;
y = square(4*t);

All of these sequences are column vectors – the last three inherit their shapes 
from t.

Multichannel Signals
Use standard MATLAB array syntax to work with multichannel signals. For 
example, a multichannel signal consisting of the last three signals generated 
above is 

z = [t t.^2 square(4*t)];

You can generate a multichannel unit sample function using the outer product 
operator. For example, a six-element column vector whose first element is one, 
and whose remaining five elements are zeros, is

a = [1 zeros(1,5)]';

To duplicate column vector a into a matrix without performing any 
multiplication, use MATLAB’s colon operator and the ones function:

c = a(:,ones(1,3));
1-7
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Common Periodic Waveforms
The toolbox provides functions for generating widely used periodic waveforms:

• sawtooth generates a sawtooth wave with peaks at ±1 and a period of 2π. An 
optional width parameter specifies a fractional multiple of 2π at which the 
signal’s maximum occurs.

• square generates a square wave with a period of 2π. An optional parameter 
specifies duty cycle, the percent of the period for which the signal is positive.

To generate 1.5 seconds of a 50 Hz sawtooth wave with a sample rate of 10 kHz 
and plot 0.2 seconds of the generated waveform, use

Fs = 10000;
t = 0:1/Fs:1.5;
x = sawtooth(2*pi*50*t);
plot(t,x), axis([0 0.2 –1 1])
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Common Aperiodic Waveforms
The toolbox also provides functions for generating several widely used 
aperiodic waveforms:

• gauspuls generates a Gaussian-modulated sinusoidal pulse with a specified 
time, center frequency, and fractional bandwidth. Optional parameters 
return in-phase and quadrature pulses, the RF signal envelope, and the 
cutoff time for the trailing pulse envelope.

• chirp generates a linear swept-frequency cosine signal. An optional 
parameter specifies alternative sweep methods. An optional parameter phi 
allows initial phase to be specified in degrees.

To compute 2 seconds of a linear chirp signal with a sample rate of 1 kHz, that 
starts at DC and crosses 150 Hz at 1 second, use

t = 0:1/1000:2;
y = chirp(t,0,1,150);

To plot the spectrogram, use

specgram(y,256,1000,256,250)
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The pulstran Function
The pulstran function generates pulse trains from either continuous or 
sampled prototype pulses. The following example generates a pulse train 
consisting of the sum of multiple delayed interpolations of a Gaussian pulse. 
The pulse train is defined to have a sample rate of 50 kHz, a pulse train length 
of 10 ms, and a pulse repetition rate of 1 kHz; D specifies the delay to each pulse 
repetition in column 1 and an optional attenuation for each repetition in 
column 2. The pulse train is constructed by passing the name of the gauspuls 
function to pulstran, along with additional parameters that specify a 10 kHz 
Gaussian pulse with 50% bandwidth:

T = 0:1/50E3:10E-3;
D = [0:1/1E3:10E-3;0.8.^(0:10)]';
Y = pulstran(T,D,'gauspuls',10E3,0.5);
plot(T,Y)

The Sinc Function
The sinc function computes the mathematical sinc function for an input vector 
or matrix x. The sinc function is the continuous inverse Fourier transform of 
the rectangular pulse of width 2π and height 1:
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The sinc function has a value of 1 where x is zero, and a value of

for all other elements of x. 

To plot the sinc function for a linearly spaced vector with values ranging from 
–5 to 5,

x = linspace(–5,5);
y = sinc(x);
plot(x,y)
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The Dirichlet Function
The toolbox function diric computes the Dirichlet function, sometimes called 
the periodic sinc or aliased sinc function, for an input vector or matrix x. The 
Dirichlet function is 

where n is a user-specified positive integer. For n odd, the Dirichlet function 
has a period of 2π; for n even, its period is 4π. The magnitude of this function is 
(1/n) times the magnitude of the discrete-time Fourier transform of the n-point 
rectangular window.

To plot the Dirichlet function over the range 0 to 4π for n = 7 and n = 8, use

x = linspace(0,4*pi,300);
plot(x,diric(x,7))
plot(x,diric(x,8))
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Working with Data
Working with Data
The examples in the preceding sections obtain data in one of two ways:

• By direct input, that is, entering the data manually at the keyboard

• Using a MATLAB or toolbox function, such as sin, cos, sawtooth, square, or 
sinc

Some applications, however, may need to import data from outside MATLAB. 
Depending on your data format, you can do this in the following ways:

• Loading data from an ASCII file or MAT-file with MATLAB’s load command

• Reading the data into MATLAB with a low-level file I/O function, such as 
fopen, fread, and fscanf

• Developing a MEX-file to read the data

Other resources are also useful, such as a high-level language program (in 
Fortran or C, for example) that converts your data into MAT-file format—see 
the MATLAB Application Programming Interface reference manual for details. 
MATLAB reads such files using the load command.

Similar techniques are available for exporting data generated within 
MATLAB. See Using MATLAB for more details on importing and exporting 
data, and see the online MATLAB Function Reference for descriptions of file 
loading and I/O routines.
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Filter Implementation and Analysis
This section describes how to filter discrete signals using MATLAB’s filter 
function and other functions in the Signal Processing Toolbox. It also discusses 
how to use the toolbox functions to analyze filter characteristics, including 
impulse response, magnitude and phase response, group delay, and zero-pole 
locations.

Convolution and Filtering
The mathematical foundation of filtering is convolution. MATLAB’s conv 
function performs standard one-dimensional convolution, convolving one 
vector with another:

conv([1 1 1],[1 1 1])

ans =

     1     2     3     2     1

NOTE  Convolve rectangular matrices for two-dimensional signal processing 
using the conv2 function.

A digital filter’s output y(n) is related to its input x(n) by convolution with its 
impulse response h(n):

If a digital filter’s impulse response h(n) is finite length, and the input x(n) is 
also finite length, you can implement the filter using conv. Store x(n) in a vector 
x, h(n) in a vector h, and convolve the two:

x = randn(5,1);   % a random vector of length 5
h = [1 1 1 1]/4;  % length 4 averaging filter
y = conv(h,x);

y n h n x n h n m x m

m

( ) ( ) ( ) ( ) ( )= ∗ = −
=−∞

∞

∑
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Filter Implementation and Analysis
Filters and Transfer Functions
In general, the z-transform Y(z) of a digital filter’s output y(n) is related to the 
z-transform X(z) of the input by:

where H(z) is the filter’s transfer function. Here, the constants b(i) and a(i) are 
the filter coefficients and the order of the filter is the maximum of na and nb. 

NOTE  The filter coefficients start with subscript 1, rather than 0. This reflects 
MATLAB’s standard indexing scheme for vectors.

MATLAB stores the coefficients in two vectors, one for the numerator and one 
for the denominator. By convention, MATLAB uses row vectors for filter 
coefficients.

Filter Coefficients and Filter Names
Many standard names for filters reflect the number of a and b coefficients 
present:

• When nb = 0 (that is, b is a scalar), the filter is an Infinite Impulse Response 
(IIR), all-pole, recursive, or autoregressive (AR) filter.

• When na = 0 (that is, a is a scalar), the filter is a Finite Impulse Response 
(FIR), all-zero, nonrecursive, or moving average (MA) filter.

• If both na and nb are greater than zero, the filter is an IIR, pole-zero, 
recursive, or autoregressive moving average (ARMA) filter.

The names AR, MA, and ARMA are usually applied to filters associated with 
filtered stochastic processes.

Filtering with the filter Function
It is simple to work back to a difference equation from the z-transform relation 
shown earlier. Assume that a(1) = 1. Move the denominator to the left-hand 
side and take the inverse z-transform:

Y z H z X z
b b z b nb z

a a z a na z
X z

nb

na( ) ( ) ( )
( ) ( ) ... ( )

( ) ( ) ... ( )
( )= = + + + +

+ + + +

− −

− −
1 2 1

1 2 1

1

1

y n a y n a na y n na b x n b x n b nb x n nb( ) ( ) ( ) ... ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )+ − + + + − = + − + + + −2 1 1 1 2 1 1
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In terms of current and past inputs, and past outputs, y(n) is:

This is the standard time-domain representation of a digital filter, computed 
starting with y(1) and assuming zero initial conditions. This representation’s 
progression is

A filter in this form is easy to implement with the filter function. For 
example, a simple single-pole filter (lowpass) is:

b = 1;          % numerator
a = [1 –0.9];   % denominator

where the vectors b and a represent the coefficients of a filter in transfer 
function form. To apply this filter to your data:

y = filter(b,a,x);

filter gives you as many output samples as there are input samples, that is, 
the length of y is the same as the length of x. If the first element of a is not 1, 
filter divides the coefficients by a(1) prior to implementing the difference 
equation.

y n b x n b x n b nb x n nb a y n a na y n na( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) ... ( ) ( )= + − + + + − − − − − + −1 2 1 1 2 1 1

  

y b x

y b x b x a y

y b x b x b x a y a y

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

2 1 2 2 1 2 1

3 1 3 2 2 3 1 2 2 3 1

=
= ( ) + −
= + + − −

M
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filter Function Implementation and Initial Conditions
filter Function Implementation and Initial Conditions
filter is implemented as a transposed direct form II structure

where n-1 is the filter order. This is a canonical form that has the minimum 
number of delay elements. 

At sample m, filter computes the difference equations

In its most basic form, filter initializes the delay outputs zi(1), i = 1, ..., n-1 
to 0. This is equivalent to assuming both past inputs and outputs are zero. Set 
the initial delay outputs using a fourth input parameter to filter, or access 
the final delay outputs using a second output parameter: 

[y,zf] = filter(b,a,x,zi)

Access to initial and final conditions is useful for filtering data in sections, 
especially if memory limitations are a consideration. Suppose you have 
collected data in two segments of 5000 points each:

x1 = randn(5000,1);  % two random sequences to
x2 = randn(5000,1);  % serve as simulated data

Perhaps the first sequence, x1, corresponds to the first 10 minutes of data and 
the second, x2, to an additional 10 minutes. The whole sequence is
x = [x1; x2]. If there is not sufficient memory to hold the combined sequence, 
filter the subsequences x1 and x2 one at a time. To ensure continuity of the 

Σ Σ Σz -1 z -1

x(m)

y(m)

b(3) b(2) b(1)

–a(3) –a(2)

z1(m)z2(m)
Σ z -1
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...

  

y m

z m

z m

z m

b x m z m
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b n x m a n
n
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n
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−

=
=
=
=
=

+ −
+ − −

− + − − −
−

  

)) ( )y m
1-17



1 Signal Processing Basics

1-1
filtered sequences, use the final conditions from x1 as initial conditions to filter 
x2:

[y1,zf] = filter(b,a,x1);
y2 = filter(b,a,x2,zf);

The filtic function generates initial conditions for filter. filtic computes 
the delay vector to make the behavior of the filter reflect past inputs and 
outputs that you specify. To obtain the same output delay values zf as above 
using filtic:

zf = filtic(b,a,flipud(y1),flipud(x1));

This can be useful when filtering short data sequences, as appropriate initial 
conditions help reduce transient startup effects.
8



Other Functions for Filtering
Other Functions for Filtering
In addition to filter, there are several other functions in the Signal 
Processing Toolbox that perform the basic filtering operation. These functions 
are upfirdn, which performs FIR filtering with resampling, filtfilt, which 
eliminates phase distortion in the filtering process, and fftfilt, which 
performs the FIR filtering operation in the frequency domain.

Multirate Filter Bank Implementation
The function upfirdn alters the sampling rate of a signal by an integer ratio
P/Q. It computes the result of the cascade of three systems: (1) upsampling 
(zero insertion) by integer factor p, (2) filtering by FIR filter h, and (3) 
downsampling by integer factor q: 

For example, to change the sample rate of a signal from 44.1  kHz to 48 kHz, 
we first find the smallest integer conversion ratio p/q:

d = gcd(48000,44100);
p = 48000/d;
q = 44100/d;

where we find that p = 160 and q = 147. Sample rate conversion is then 
accomplished by y = upfirdn(x,h,p,q). This cascade of operations is 
implemented in an efficient manner using polyphase filtering techniques, and 
it is a central concept of multirate filtering (see reference [1] for details on 
multirate filter theory). Note that the quality of the resampling result relies on 
the quality of the FIR filter h.

Filter banks may be implemented using upfirdn by allowing the filter h to be 
a matrix, with one FIR filter per column. A signal vector is passed 
independently through each FIR filter, resulting in a matrix of output signals.

Px(n) y(n)
FIR
H Q
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Anti-Causal, Zero-Phase Filter Implementation
In the case of FIR filters, it is possible to design linear phase filters that, when 
applied to data (using filter or conv), simply delay the output by a fixed 
number of samples. For IIR filters, however, the phase distortion is usually 
highly nonlinear. The filtfilt function uses the information in the signal at 
points before and after the current point, in essence “looking into the future,” 
to eliminate phase distortion.

To see how filtfilt does this, recall that if the z-transform of a real sequence 
x(n) is X(z), the z-transform of the time reversed sequence x(n) is X(1/z). 
Consider the processing scheme

When |z| = 1, that is z = ejw, the output reduces to X(ejw)|H(ejw)|2. Given all 
the samples of the sequence x(n), a doubly filtered version of x that has 
zero-phase distortion is possible.

For example, a one-second duration signal sampled at 100 Hz, composed of two 
sinusoidal components at 3 Hz and 40 Hz, is 

Fs = 100;
t = 0:1/Fs:1;
x = sin(2*pi*t*3)+.25*sin(2*pi*t*40);

H(z)X(z)

X(z)H(z) X(1/z)H(1/z) X(1/z)H(1/z)H(z)

X(z)H(1/z)H(z)H(z)Time
Reverse

Time
Reverse
0



Other Functions for Filtering
Now create a 10-point averaging FIR filter, and filter x using both filter and 
filtfilt for comparison:

b = ones(1,10)/10;  % 10 point averaging filter
y = filtfilt(b,1,x);  % non–causal filtering
yy = filter(b,1,x);   % normal filtering
plot(t,x,t,y,'--',t,yy,':') 

Both filtered versions eliminate the 40 Hz sinusoid evident in the original, 
solid line. The plot also shows how filter and filtfilt differ; the dashed 
(filtfilt) line is in phase with the original 3 Hz sinusoid, while the dotted 
(filter) line is delayed by about five samples. Also, the amplitude of the 
dashed line is smaller due to the magnitude squared effects of filtfilt.

filtfilt reduces filter startup transients by carefully choosing initial 
conditions, and by prepending onto the input sequence a short, reflected piece 
of the input sequence. For best results, make sure the sequence you are 
filtering has length at least three times the filter order, and that it tapers to 
zero on both edges.
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Frequency Domain Filter Implementation
Duality between the time domain and the frequency domain makes it possible 
to perform any operation in either domain. Usually one domain or the other is 
more convenient for a particular operation, but you can always accomplish a 
given operation in either domain.

To implement general IIR filtering in the frequency domain, multiply the 
discrete Fourier transform (DFT) of the input sequence with the quotient of the 
DFT of the filter,

n = length(x);
y = ifft(fft(x).*fft(b,n)./fft(a,n));

This computes results that are identical to filter, but with different startup 
transients (edge effects). For long sequences, this computation is very 
inefficient because of the large zero-padded FFT operations on the filter 
coefficients, and because the FFT algorithm becomes less efficient as the 
number of points n increases.

For FIR filters, however, it is possible to break longer sequences into shorter, 
computationally efficient FFT lengths. The function

y = fftfilt(b,x)

uses the overlap add method (see reference [1] at the end of this chapter) to 
filter a long sequence with multiple medium-length FFTs. Its output is 
equivalent to filter(b,1,x).
2



Impulse Response
Impulse Response
The impulse response of a digital filter is the output arising from the input 
sequence 

In MATLAB, you can generate an impulse sequence a number of ways; one 
straightforward way is

imp = [1; zeros(49,1)];

The impulse response of the simple filter b = 1 and a = [1 –0.9] is

h = filter(b,a,imp);

The impz function in the toolbox simplifies this operation, choosing the number 
of points to generate and then making a stem plot (using the stem function):

impz(b,a)

The plot shows the exponential decay h(n) = 0.9n of the single pole system.
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Frequency Response
The Signal Processing Toolbox enables you to perform frequency domain 
analysis of both analog and digital filters.

Digital Domain
freqz uses an FFT-based algorithm to calculate the z-transform frequency 
response of a digital filter. Specifically, the statement

[h,w] = freqz(b,a,n)

returns the n-point complex frequency response, H(ejw), of the digital filter:

In its simplest form, freqz accepts the filter coefficient vectors b and a, and an 
integer n specifying the number of points at which to calculate the frequency 
response. freqz returns the complex frequency response in vector h, and the 
actual frequency points in vector w in radians/second. 

freqz can accept other parameters, such as a sampling frequency or a vector of 
arbitrary frequency points. The example below finds the 256-point frequency 
response for a 12th-order Chebyshev type I filter. The call to freqz specifies a 
sampling frequency Fs of 1000 Hz:

[b,a] = cheby1(12,0.5,200/500);
[h,f] = freqz(b,a,256,1000);

Because the parameter list includes a sampling frequency, freqz returns a 
vector f that contains the 256 frequency points between 0 and Fs/2 used in the 
frequency response calculation.

H e
b b e b nb e

a a e a na e

j
j j nb

j j na( )
( ) ( ) ... ( )

( ) ( ) ... ( )

( )

( )
ω

ω ω

ω ω= + + + +
+ + + +

− −

− −
1 2 1

1 2 1
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Frequency Response
Frequency Normalization  This toolbox uses the convention that unit 
frequency is the Nyquist frequency, defined as half the sampling frequency. 
The cutoff frequency parameter for all basic filter design functions is 
normalized by the Nyquist frequency. For a system with a 1000 Hz sampling 
frequency, for example, 300 Hz is 300/500 = 0.6. To convert normalized 
frequency to angular frequency around the unit circle, multiply by π. To 
convert normalized frequency back to Hertz, multiply by half the sample 
frequency.

If you call freqz with no output arguments, it automatically plots both 
magnitude versus frequency and phase versus frequency. For example, a 
ninth-order Butterworth lowpass filter with a cutoff frequency of 400 Hz, based 
on a 2000 Hz sampling frequency, is

[b,a] = butter(9,400/1000);

Now calculate the 256-point complex frequency response for this filter, and plot 
the magnitude and phase with a call to freqz:

freqz(b,a,256,2000)
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freqz can also accept a vector of arbitrary frequency points for use in the 
frequency response calculation. For example,

w = linspace(0,pi);
h = freqz(b,a,w);

calculates the complex frequency response at the frequency points in w for the 
filter defined by vectors b and a. The frequency points can range from 0 to 2π. 
To specify a frequency vector that ranges from zero to your sampling frequency, 
include both the frequency vector and the sampling frequency value in the 
parameter list.

Analog Domain
freqs evaluates frequency response for an analog filter defined by two input 
coefficient vectors b and a. Its operation is similar to that of freqz; you can 
specify a number of frequency points to use (by default, the function uses 200), 
supply a vector of arbitrary frequency points, and plot the magnitude and 
phase response of the filter.

Magnitude and Phase
MATLAB provides functions to extract magnitude and phase from a frequency 
response vector h. The function abs returns the magnitude of the response; 
angle returns the phase angle in radians. To extract and plot the magnitude 
and phase of a Butterworth filter:

[b,a] = butter(6,300/500); [h,w] = freqz(b,a,512,1000);
m = abs(h); p = angle(h);
semilogy(w,m);
plot(w,p*180/pi)
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Frequency Response
The unwrap function is also useful in frequency analysis. unwrap unwraps the 
phase to make it continuous across 360° phase discontinuities by adding 
multiples of ±360˚, as needed. To see how unwrap is useful, design a 25th-order 
lowpass FIR filter:

h = fir1(25,0.4);

Obtain the filter’s frequency response with freqz, and plot the phase in 
degrees:

[H,f] = freqz(h,1,512,2);
plot(f,angle(H)*180/pi); grid

It is difficult to distinguish the 360˚ jumps (an artifact of the arctangent 
function inside angle) from the 180˚ jumps that signify zeros in the frequency 
response. 
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Use unwrap to eliminate the 360˚ jumps:

plot(f,unwrap(angle(H))*180/pi); grid

Delay
The group delay of a filter is a measure of the average delay of the filter as a 
function of frequency. It is defined as the negative first derivative of a filter’s 
phase response. If the complex frequency response of a filter is H(ejw), then the 
group delay is 

where θ is the phase angle of H(ejw). Compute group delay with

[gd,w] = grpdelay(b,a,n)

which returns the n-point group delay, , of the digital filter specified by b 
and a, evaluated at the frequencies in vector w.

The phase delay of a filter is the negative of phase divided by frequency
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Frequency Response
To plot both the group and phase delays of a system on the same graph:

[b,a] = butter(10,200/1000);
gd = grpdelay(b,a,128);
[h,f] = freqz(b,a,128,2000);
pd = –unwrap(angle(h))*(2000/(2*pi))./f;
plot(f,gd,'–',f,pd,'– –')
axis([0 1000 –30 30])
legend('Group Delay','Phase Delay')
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Zero-Pole Analysis
The zplane function plots poles and zeros of a linear system. For example, a 
simple filter with a 0 at -1/2 and a complex pole pair at  and 

 is

zer = –0.5; 
pol = .9*exp(j*2*pi*[–0.3 .3]');

The zero-pole plot for the filter is:

zplane(zer,pol)

For a system in zero-pole form, supply column vector arguments z and p to 
zplane:

zplane(z,p)

For a system in transfer function form, supply row vectors b and a as 
arguments to zplane:

zplane(b,a)

In this case zplane finds the roots of b and a using the roots function and plots 
the resulting zeros and poles.
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Zero-Pole Analysis
See “Linear System Models” on page 1-32 for details on zero-pole and transfer 
function representation of systems.
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Linear System Models
The Signal Processing Toolbox provides several models for representing linear 
time-invariant systems. This flexibility lets you choose the representational 
scheme that best suits your application and, within the bounds of numeric 
stability, convert freely to and from most other models. This section provides a 
brief overview of supported linear system models and describes how to work 
with these models in MATLAB.

Discrete-Time System Models
The discrete-time system models are representational schemes for digital 
filters. MATLAB supports several discrete-time system models:

• Transfer function

• Zero-pole-gain form

• State-space form

• Partial fraction expansion

• Second-order section form

• Lattice structure form

• Convolution matrices

Transfer Function
The transfer function is a basic z-domain representation of a digital filter, 
expressing the filter as a ratio of two polynomials. It is the principal 
discrete-time model for this toolbox. The transfer function model description 
for the z-transform of a digital filter’s difference equation is

Here, the constants b(i) and a(i) are the filter coefficients, and the order of the 
filter is the maximum of na and nb. In MATLAB, you store these coefficients in 
two vectors (row vectors by convention), one row vector for the numerator and 
one for the denominator. See “Filters and Transfer Functions” on page 1-15 for 
more details on the transfer function form.

Y z
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Linear System Models
Zero-Pole-Gain
The factored or zero-pole-gain form of a transfer function is

By convention, MATLAB stores polynomial coefficients in row vectors and 
polynomial roots in column vectors. In zero-pole-gain form, therefore, the zero 
and pole locations for the numerator and denominator of a transfer function 
reside in column vectors. The factored transfer function gain k is a MATLAB 
scalar.

The poly and roots functions convert between polynomial and zero-pole-gain 
representations. For example, a simple IIR filter is

b = [2 3 4];
a = [1 3 3 1];

The zeros and poles of this filter are

q = roots(b)

q =

–0.7500 + 1.1990i
–0.7500 – 1.1990i

p = roots(a)

p =

–1.0000
–1.0000 + 0.0000i
–1.0000 – 0.0000i

k = b(1)/a(1)

k =

2

H z
q z

p z
k

z q z q z q n

z p z p z p n
( )

( )
( )

( ( ))( ( ))...( ( ))
( ( ))( ( ))...( ( ))

= = − − −
− − −

1 2
1 2
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Returning to the original polynomials,

bb = k*poly(q)

bb =

2.0000 3.0000 4.0000

aa = poly(p)

aa =

1.0000 3.0000 3.0000 1.0000

Note that b and a in this case represent the transfer function

For b = [2 3 4], the roots function misses the zero for z equal to 0. In fact, it 
misses poles and zeros for z equal to 0 whenever the input transfer function has 
more poles than zeros, or vice versa. This is acceptable in most cases. To 
circumvent the problem, however, simply append zeros to make the vectors the 
same length before using the roots function, for example, b = [b 0].

State-Space
It is always possible to represent a digital filter, or a system of difference 
equations, as a set of first-order difference equations. In matrix or state-space 
form, you can write the equations as

where u is the input, x is the state vector, and y is the output. For 
single-channel systems, A is an m-by-m matrix where m is the order of the filter, 
B is a column vector, C is a row vector, and D is a scalar. State-space notation is 
especially convenient for multichannel systems where input u and output y 
become vectors, and B, C, and D become matrices.

State-space representation extends easily to the MATLAB environment. In 
MATLAB, A, B, C, and D are rectangular arrays; MATLAB treats them as 
individual variables.
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Linear System Models
Taking the z-transform of the state-space equations and combining them shows 
the equivalence of state-space and transfer function form:

Don’t be concerned if you are not familiar with the state-space representation 
of linear systems. Some of the filter design algorithms use state-space form 
internally, but do not require any knowledge of state-space concepts to use 
them successfully. If your applications use state-space based signal processing 
extensively, however, consult the Control System Toolbox for a comprehensive 
library of state-space tools.

Partial Fraction Expansion (Residue Form)
Each transfer function also has a corresponding partial fraction expansion or 
residue form representation, given by

provided H(z) has no repeated poles. Here, n is the degree of the denominator 
polynomial of the rational transfer function b(z)/a(z). If r is a pole of multiplicity 
sr, then H(z) has terms of the form

The residuez function in the Signal Processing Toolbox converts transfer 
functions to and from the partial fraction expansion form. The “z” on the end of 
residuez stands for z-domain, or discrete domain. residuez returns the poles 
in a column vector p, the residues corresponding to the poles in a column vector 
r, and any improper part of the original transfer function in a row vector k. 
residuez determines that two poles are the same if the magnitude of their 
difference is smaller than 0.1 percent of either of the poles’ magnitudes.

Partial fraction expansion arises in signal processing as one method of finding 
the inverse z-transform of a transfer function. For example, the partial fraction 
expansion of
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is

b = [—4 8];
a = [1 6 8];
[r,p,k] = residuez(b,a)

r =

–12
8

p =

–4
–2

k =

[]

corresponding to

To find the inverse z-transform of H(z), find the sum of the inverse z-transforms 
of the two addends of H(z), giving the causal impulse response:

To verify this in MATLAB,

imp = [1 0 0 0 0];
resptf = filter(b,a,imp)

resptf =

–4 32 –160 704 –2944

respres = filter(r(1),[1 –p(1)],imp) + filter(r(2),[1 –p(2)],imp)

respres =

–4 32 –160 704 –2944

H z
z z

( ) = −
+

+
+− −

12

1 4

8

1 21 1

h n nn n( ) ( ) ( ) , , , , ...= − − + − =12 4 8 2 0 1 2   
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Linear System Models
Second-Order Sections (SOS)
Any transfer function H(z) has a second-order sections representation,

where L is the number of second-order sections that describe the system. 
MATLAB represents the second-order section form of a discrete-time system as 
an L-by-6 array sos. Each row of sos contains a single second-order section, 
where the row elements are the three numerator and three denominator 
coefficients that describe the second-order section:

There are an uncountable number of ways to represent a filter in second order 
sections form. Through careful pairing of the pole and zero pairs, ordering of 
the sections in the cascade, and multiplicative scaling of the sections, it is 
possible to reduce quantization noise gain and avoid overflow in some 
fixed-point filter implementations. The functions zp2sos and ss2sos, described 
later in “Linear System Transformations,” perform pole-zero pairing, section 
scaling, and section ordering.

Lattice Structure
For a discrete Nth order all-pole or all-zero filter described by the polynomial 
coefficients a(n), n = 1,2,…,N+1, there are N corresponding lattice structure 
coefficients k(n), n = 1,2,…,N. The parameters k(n) are also called the reflection 
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coefficients of the filter. Given these reflection coefficients, you can implement 
a discrete filter as

For a general pole-zero IIR filter described by polynomial coefficients a and b, 
there are both lattice coefficients k(n) for the denominator a and ladder 
coefficients v(n) for the numerator b. The lattice/ladder filter may be 
implemented as

Σ

Σ

z -1

y(m)
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k(1)

Σ

Σ

k(n)

k(n)

. . .

. . . z -1

FIR Lattice Filter
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x(m)

Σ
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Σ
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Linear System Models
The toolbox function tf2latc accepts an FIR or IIR filter in polynomial form 
and returns the corresponding reflection coefficients. An example IIR filter in 
polynomial form is 

a = [1.0000   0.6149   0.9899   0.0000   0.0031  –0.0082];

This filter’s lattice (reflection coefficient) representation is

k = tf2latc(a)

k =

    0.3090
0.9800
0.0031
0.0081
–0.0082

The magnitude of the reflection coefficients provides an easy stability check for 
a filter. If all the reflection coefficients corresponding to a polynomial have 
magnitude less than 1, all of that polynomial’s roots are inside the unit circle.

The function latc2tf calculates the polynomial coefficients for a filter from its 
lattice (reflection) coefficients. Given the reflection coefficient vector k(above), 
the corresponding polynomial form is

a = latc2tf(k)

a =

    1.0000    0.6149    0.9899 –0.0000    0.0031  –0.0082

The lattice or lattice/ladder coefficients can be used to implement the filter 
using the function latcfilt.

Convolution Matrix
In signal processing, convolving two vectors or matrices is equivalent to 
filtering one of the input operands by the other. This relationship permits the 
representation of a digital filter as a convolution matrix.

Given any vector, the toolbox convmtx function generates a matrix whose inner 
product with another vector is equivalent to the convolution of the two vectors. 
The generated matrix represents a digital filter that you can apply to any 
1-39
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vector of appropriate length; the inner dimension of the operands must agree 
to compute the inner product. 

The convolution matrix for a vector b, representing the numerator coefficients 
for a digital filter, is

b = [1 2 3]; x = randn(3,1);
C = convmtx(b',3)

C =

1 0 0
2 1 0
3 2 1
0 3 2
0 0 3

Two ways to convolve b with x are

y1 = C*x;
y2 = conv(b,x);

Type this example into MATLAB; the results for y1 and y2 are equal.

Continuous-Time System Models
The continuous-time system models are representational schemes for analog 
filters. Many of the discrete-time system models described earlier are also 
appropriate for the representation of continuous-time systems:

• State-space form

• Partial fraction expansion

• Transfer function

• Zero-pole-gain form

It is possible to represent any system of linear time-invariant differential 
equations as a set of first-order differential equations. In matrix or state-space 
form, you can express the equations as

ẋ Ax Bu

y Cx Du

= +
= +
0



Linear System Models
where u is a vector of nu inputs, x is an nx-element state vector, and y is a vector 
of ny outputs. In MATLAB, store A, B, C, and D in separate rectangular arrays.

An equivalent representation of the state-space system is the Laplace 
transform transfer function description

where

For single-input, single-output systems, this form is given by 

Given the coefficients of a Laplace transform transfer function, residue 
determines the partial fraction expansion of the system. See the description of 
residue in the MATLAB Language Reference Manual for details.

The factored zero-pole-gain form is

As in the discrete-time case, MATLAB stores polynomial coefficients in row 
vectors in descending powers of s. MATLAB stores polynomial roots, or zeros 
and poles, in column vectors.

Linear System Transformations
The Signal Processing Toolbox provides a number of functions that convert 
between the various linear system models; see the reference description in 
Chapter 6 for a complete description of each. You can use the following chart to 
find an appropriate transfer function: find the row of the model to convert from 
on the left side of the chart and the column of the model to convert to on the top 
of the chart and read the function name(s) at the intersection of the row and 
column:
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Many of the toolbox filter design functions use these functions internally. For 
example, the zp2ss function converts the poles and zeros of an analog 
prototype into the state-space form required for creation of a Butterworth, 
Chebyshev, or elliptic filter. Once in state-space form, the filter design function 
performs any required frequency transformation, that is, it transforms the 
initial lowpass design into a bandpass, highpass, or bandstop filter, or a 
lowpass filter with the desired cutoff frequency. See Chapter 6 and the 
reference descriptions of the individual filter design functions for more details.

Transfer 
function

State 
space
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pole
gain

Partial 
fraction

Lattice 
filter

Second-
order 
sections

Convolution
matrix

Transfer 
function

tf2ss tf2zp 
roots
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fraction

residuez
residue
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Second-
order 
sections
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Discrete Fourier Transform
Discrete Fourier Transform
The discrete Fourier transform, or DFT, is the primary tool of digital signal 
processing. The foundation of the Signal Processing Toolbox is the Fast Fourier 
Transform (FFT), a method for computing the DFT with reduced execution 
time. Many of the toolbox functions (including z-domain frequency response, 
spectrum and cepstrum analysis, and some filter design and implementation 
functions) incorporate the FFT.

MATLAB provides the functions fft and ifft to compute the discrete Fourier 
transform and its inverse, respectively. For the input sequence x and its 
transformed version X (the discrete-time Fourier transform at equally spaced 
frequencies around the unit circle), the two functions implement the 
relationships

In these equations, the series subscripts begin with 1 instead of 0 because of 
MATLAB’s vector indexing scheme, and

NOTE  MATLAB uses a negative j for the fft function. This is an engineering 
convention; physics and pure mathematics typically use a positive j.

fft, with a single input argument x, computes the DFT of the input vector or 
matrix. If x is a vector, fft computes the DFT of the vector; if x is a rectangular 
array, fft computes the DFT of each array column.
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For example, create a time vector and signal:

t = (0:1/99:1); % time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % signal

The DFT of the signal, and the magnitude and phase of the transformed 
sequence, are then

y = fft(x); % Compute DFT of x.
m = abs(y); p = unwrap(angle(y)); % mag. and phase

To plot the magnitude and phase,

f = (0:length(y)–1)*99/length(y); % frequency vector
plot(f,m)
set(gca,'XTick',[15 40 60 85]);
plot(f,p*180/pi)
set(gca,'XTick',[15 40 60 85]);

A second argument to fft specifies a number of points n for the transform, 
representing DFT length:

y = fft(x,n);

In this case, fft pads the input sequence with zeros if it is shorter than n, or 
truncates the sequence if it is longer than n. If n is not specified, it defaults to 
the length of the input sequence.
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Discrete Fourier Transform
Execution time for fft depends on the length n of the DFT it performs: 

• For any n that is a power of two, fft uses the high-speed radix-2 algorithm. 
This results in the fastest execution time. Additionally, the algorithm for 
power of two n is highly optimized for real x, providing a 40% speed-up over 
the complex case.

• For any composite number n that is not a power of two, fft uses a prime 
factor algorithm. The speed of this algorithm depends on both the size of n 
and number of prime factors it has. Although 1013 and 1000 are close in 
magnitude, fft transforms a sequence of length 1000 much more quickly 
than a sequence of length 1013.

• For a prime number n, fft cannot use an FFT algorithm, and instead 
performs the slower, computation-intensive DFT directly.

The inverse discrete Fourier transform function ifft also accepts an input 
sequence and, optionally, the number of desired points for the transform. Try 
the example below; the original sequence x and the reconstructed sequence are 
identical (within rounding error):

t = (0:1/255:1);
x = sin(2*pi*120*t);
y = real(ifft(fft(x)));

This toolbox also includes functions for the two-dimensional FFT and its 
inverse, fft2 and ifft2. These functions are useful for two-dimensional signal 
or image processing; see the reference descriptions in Chapter 6 for details.

It is sometimes convenient to rearrange the output of the fft or fft2 function 
so the zero frequency component is at the center of the sequence. The MATLAB 
function fftshift moves the zero frequency component to the center of a vector 
or matrix.
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Filter Requirements and Specification
The Signal Processing Toolbox provides functions that support a range of filter 
design methodologies. This chapter explains how to apply the filter design tools 
to Infinite Impulse Response (IIR) and Finite Impulse Response (FIR) filter 
design problems.

The goal of filter design is to perform frequency dependent alteration of a data 
sequence. A possible requirement might be to remove noise above 30 Hz from 
a data sequence sampled at 100 Hz. A more rigorous specification might call for 
a specific amount of passband ripple, stopband attenuation, or transition 
width. A very precise specification could ask to achieve the performance goals 
with the minimum filter order, or it could call for an arbitrary magnitude 
shape, or it might require an FIR filter.

Filter design methods differ primarily in how performance is specified. For 
“loosely specified” requirements, as in the first case above, a Butterworth IIR 
filter is often sufficient. To design a fifth-order 30 Hz lowpass Butterworth 
filter and apply it to the data in vector x,

[b,a] = butter(5,30/50);
y = filter(b,a,x);

The second input argument to butter indicates the cutoff frequency, 
normalized to half the sampling frequency (the Nyquist frequency).

Frequency Normalization in the Signal Processing Toolbox  All of the filter 
design functions operate with normalized frequencies, so they do not require 
the system sampling rate as an extra input argument. This toolbox uses the 
convention that unit frequency is the Nyquist frequency, defined as half the 
sampling frequency. The normalized frequency, therefore, is always in the 
interval 0 ≤ f ≤ 1. For a system with a 1000 Hz sampling frequency, 300 Hz is 
300/500 = 0.6. To convert normalized frequency to angular frequency around 
the unit circle, multiply by π. To convert normalized frequency back to Hertz, 
multiply by half the sample frequency.



Filter Requirements and Specification
More rigorous filter requirements traditionally include passband ripple (Rp, in 
decibels), stopband attenuation (Rs, in decibels), and transition width (Ws–Wp, 
in Hertz).

You can design Butterworth, Chebyshev type I, Chebyshev type II, and elliptic 
filters that meet this type of performance specification. The toolbox order 
selection functions estimate the minimum filter order that meets a given set of 
requirements.

To meet specifications with more rigid constraints like linear phase or 
arbitrary filter shape, use the FIR and direct IIR filter design routines.
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IIR Filter Design
The primary advantage of IIR filters over FIR filters is that they typically meet 
a given set of specifications with a much lower filter order than a corresponding 
FIR filter. Although IIR filters have nonlinear phase, data processing within 
MATLAB is commonly performed “off-line,” that is, the entire data sequence is 
available prior to filtering. This allows for a noncausal, zero-phase filtering 
approach (via the filtfilt function), which eliminates the nonlinear phase 
distortion of an IIR filter.

The classical IIR filters, Butterworth, Chebyshev types I and II, elliptic, and 
Bessel, all approximate the ideal “brickwall” filter in different ways. This 
toolbox provides functions to create all these types of classical IIR filters in both 
the analog and digital domains (except Bessel, for which only the analog case 
is supported), and in lowpass, highpass, bandpass, and bandstop 
configurations. For most filter types, you can also find the lowest filter order 
that fits a given filter specification in terms of passband and stopband 
attenuation, and transition width(s).

The direct filter design function yulewalk finds a filter with magnitude 
response approximating a desired function. This is one way to create a 
multiband bandpass filter.

You can also use the parametric modeling or system identification functions to 
design IIR filters. These functions are discussed in the “Parametric Modeling” 
section of Chapter 4.

The generalized Butterworth design function maxflat is discussed in the 
section “Generalized Butterworth Filter Design” on page 2-14.

The following table summarizes the various filter methods in the toolbox and 
lists the functions available to implement these methods:



IIR Filter Design
* See the System Identification Toolbox for an extensive collection of parametric modeling tools.

Method Description Functions

Analog 
Prototyping

Using the poles and zeros of 
a classical lowpass 
prototype filter in the 
continuous (Laplace) 
domain, obtain a digital 
filter through frequency 
transformation and filter 
discretization.

Complete design functions:

   besself, butter, cheby1, cheby2, ellip

Order estimation functions:

   buttord, cheb1ord, cheb2ord, ellipord

Lowpass analog prototype functions:

   besselap, buttap, cheb1ap, cheb2ap, 
   ellipap

Frequency transformation functions:

   lp2bp, lp2bs, lp2hp, lp2lp

Filter discretization functions:

   bilinear, impinvar

Direct Design Design digital filter 
directly in the discrete 
domain by approximating a 
piecewise linear magnitude 
response.

   yulewalk

Parametric 
Modeling*

Find a digital filter that 
approximates a prescribed 
time or frequency domain 
response.

Time-domain modeling functions:

   lpc, prony, stmcb

Frequency-domain modeling functions:

   invfreqs, invfreqz

Generalized 
Butterworth 
Design

Design lowpass 
Butterworth filters with 
more zeros than poles.

   maxflat
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Classical IIR Filter Design Using Analog Prototyping
The principal IIR digital filter design technique this toolbox provides is based 
on the conversion of classical lowpass analog filters to their digital equivalents. 
The following sections describe how to design filters and summarize the 
characteristics of the supported filter types. See “Special Topics in IIR Filter 
Design” on page 2-37 for detailed steps on the filter design process.

Complete Classical IIR Filter Design
You can easily create a filter of any order with a lowpass, highpass, bandpass, 
or bandstop configuration using the filter design functions:

By default, each of these functions returns a lowpass filter; you need only 
specify the desired cutoff frequency Wn in normalized frequency (Nyquist 
frequency = 1 Hz). For a highpass filter, append the string 'high' to the 
function’s parameter list. For a bandpass or bandstop filter, specify Wn as a 
two-element vector containing the passband edge frequencies, appending the 
string 'stop' for the bandstop configuration. 

Filter Type Design Function

Butterworth [b,a] = butter(n,Wn,options)
[z,p,k] = butter(n,Wn,options)
[A,B,C,D] = butter(n,Wn,options)

Chebyshev type I [b,a] = cheby1(n,Rp,Wn,options)
[z,p,k] = cheby1(n,Rp,Wn,options)
[A,B,C,D] = cheby1(n,Rp,Wn,options)

Chebyshev type II [b,a] = cheby2(n,Rs,Wn,options)
[z,p,k] = cheby2(n,Rs,Wn,options)
[A,B,C,D] = cheby2(n,Rs,Wn,options)

Elliptic [b,a] = ellip(n,Rp,Rs,Wn,options)
[z,p,k] = ellip(n,Rp,Rs,Wn,options)
[A,B,C,D] = ellip(n,Rp,Rs,Wn,options)

Bessel (analog only) [b,a] = besself(n,Wn,options)
[z,p,k] = besself(n,Wn,options)
[A,B,C,D] = besself(n,Wn,options)



IIR Filter Design
Here are some example digital filters:

[b,a] = butter(5,.4); % lowpass Butterworth
[b,a] = cheby1(4,1,[.4 .7]); % bandpass Chebyshev type I
[b,a] = cheby2(6,60,.8,'high'); % highpass Chebyshev type II
[b,a] = ellip(3,1,60,[.4 .7],'stop'); % bandstop elliptic

To design an analog filter, perhaps for simulation, use a trailing 's' and 
specify cutoff frequencies in radians/second:

[b,a] = butter(5,.4,'s'); % analog Butterworth filter

All filter design functions return a filter in the transfer function, 
zero-pole-gain, or state-space linear system model representation, depending 
on how many output arguments are present.

Designing IIR Filters to Frequency Domain Specifications
This toolbox provides order selection functions that calculate the minimum 
filter order that meets a given set of requirements:

These are useful in conjunction with the filter design functions. Suppose you 
want a bandpass filter with a passband from 1000 to 2000 Hz, stopbands 
starting 500 Hz away on either side, a 10 kHz sampling frequency, at most 1 dB 

Filter Type Order Estimation Function

Butterworth [n,Wn] = buttord(Wp,Ws,Rp,Rs)

Chebyshev type I [n,Wn] = cheb1ord(Wp, Ws, Rp, Rs)

Chebyshev type II [n,Wn] = cheb2ord(Wp, Ws, Rp, Rs)

Elliptic [n,Wn] = ellipord(Wp, Ws, Rp, Rs)
2-7
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of passband ripple, and at least 60 dB of stopband attenuation. To meet these 
specifications with the butter function:

[n,Wn] = buttord([1000 2000]/5000,[500 2500]/5000,1,60)

n =

    12

Wn =

    0.1951    0.4080

[b,a] = butter(n,Wn);

An elliptic filter that meets the same requirements is given by

[n,Wn] = ellipord([1000 2000]/5000,[500 2500]/5000,1,60)

n =

    5

Wn =

    0.2000    0.4000

[b,a] = ellip(n,1,60,Wn);

These functions also work with the other standard band configurations, as well 
as for analog filters; see Chapter 6 for details.

Comparison of Classical IIR Filter Types
The toolbox provides five different types of classical IIR filters, each optimal in 
some way. This section shows the basic analog prototype form for each and 
summarizes major characteristics.

Butterworth Filter
The Butterworth filter provides the best Taylor Series approximation to the 
ideal lowpass filter response at Ω = 0 and Ω = ∞; for any order N, the magnitude 
squared response has 2N–1 zero derivatives at these locations (maximally flat 
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at Ω = 0 and Ω = ∞). Response is monotonic overall, decreasing smoothly from 
Ω = 0 to Ω = ∞. |H(jΩ)| = sqrt(1/2) at Ω = 1.

Chebyshev Type I Filter
The Chebyshev type I filter minimizes the absolute difference between the 
ideal and actual frequency response over the entire passband by incorporating 
an equal ripple of Rp dB in the passband. Stopband response is maximally flat. 
The transition from passband to stopband is more rapid than for the 
Butterworth filter. |H(jΩ)| = 10-Rp/20 at Ω = 1.
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Chebyshev Type II Filter
The Chebyshev type II filter minimizes the absolute difference between the 
ideal and actual frequency response over the entire stopband, by incorporating 
an equal ripple of Rs dB in the stopband. Passband response is maximally flat.

The stopband does not approach zero as quickly as the type I filter (and does 
not approach zero at all for even-valued n). The absence of ripple in the 
passband, however, is often an important advantage. |H(jΩ)| = 10-Rs/20 at 
Ω = 1.

Elliptic Filter
Elliptic filters are equiripple in both the passband and stopband. They 
generally meet filter requirements with the lowest order of any supported filter 
type. Given a filter order n, passband ripple Rp in decibels, and stopband ripple 
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IIR Filter Design
Rs in decibels, elliptic filters minimize transition width. |H(jΩ)| = 10-Rp/20 at 
Ω = 1.

Bessel Filter
Analog Bessel lowpass filters have maximally flat group delay at zero 
frequency and retain nearly constant group delay across the entire passband. 
Filtered signals therefore maintain their waveshapes in the passband 
frequency range. Frequency mapped and digital Bessel filters, however, do not 
have this maximally flat property; this toolbox supports only the analog case 
for the complete Bessel filter design function.
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Bessel filters generally require a higher filter order than other filters for 
satisfactory stopband attenuation. |H(jΩ)| <  at Ω = 1 and decreases as n 
increases.

NOTE  The lowpass filters shown above were created with the analog 
prototype functions besselap, buttap, cheb1ap, cheb2ap, and ellipap. These 
functions find the zeros, poles, and gain of an order n analog filter of the 
appropriate type with cutoff frequency of 1 rad/sec. The complete filter design 
functions (besself, butter, cheby1, cheby2, and ellip) call the prototyping 
functions as a first step in the design process. See “Special Topics in IIR Filter 
Design” on page 2-37 for details.

To create similar plots, use n = 5 and, as needed, Rp = 0.5 and Rs = 20. For 
example, to create the elliptic filter plot:

[z,p,k] = ellipap(5,.5,20);
w = logspace(–1,1,1000);
h = freqs(k*poly(z),poly(p),w);
semilogx(w,abs(h)), grid

1 2/
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IIR Filter Design
Direct IIR Filter Design
This toolbox uses the term direct methods to describe techniques for IIR design 
that find a filter based on specifications in the discrete domain. Unlike the 
analog prototyping method, direct design methods are not constrained to the 
standard lowpass, highpass, bandpass, or bandstop configurations. Rather, 
these functions design filters with an arbitrary, perhaps multiband, frequency 
response. This section discusses the yulewalk function, which is intended 
specifically for filter design; “Parametric Modeling” in Chapter 4 discusses 
other methods that may also be considered direct, such as Prony’s method, 
Linear Prediction, the Steiglitz-McBride method, and inverse frequency 
design.

yulewalk designs recursive IIR digital filters by fitting a specified frequency 
response. yulewalk’s name reflects its method for finding the filter’s 
denominator coefficients: it finds the inverse FFT of the ideal desired power 
spectrum and solves the “modified Yule-Walker equations” using the resulting 
autocorrelation function samples. The statement

[b,a] = yulewalk(n,f,m)

returns row vectors b and a containing the n+1 numerator and denominator 
coefficients of the order n IIR filter whose frequency-magnitude characteristics 
approximate those given in vectors f and m. f is a vector of frequency points 
ranging from 0 to 1, where 1 represents the Nyquist frequency. m is a vector 
containing the desired magnitude response at the points in f. f and m can 
describe any piecewise linear shape magnitude response, including a 
multiband response. The FIR counterpart of this function is fir2, which also 
designs a filter based on an arbitrary piecewise linear magnitude response. See 
“FIR Filter Design” on page 2-16 for details.

Note that yulewalk does not accept phase information, and no statements are 
made about the optimality of the resulting filter.
2-13
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Design a multiband filter with yulewalk, and plot the desired and actual 
frequency response:

m = [0   0   1   1   0   0   1   1   0 0];
f = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1];
[b,a] = yulewalk(10,f,m);
[h,w] = freqz(b,a,128);
plot(f,m,w/pi,abs(h))

Generalized Butterworth Filter Design
The toolbox function maxflat enables you to design generalized Butterworth 
filters, that is, Butterworth filters with differing numbers of zeros and poles. 
This is desirable in some implementations where poles are more expensive 
computationally than zeros. maxflat is just like the butter function, except 
that it you can specify two orders (one for the numerator and one for the 
denominator) instead of just one. These filters are maximally flat. This means 
that the resulting filter is optimal for any numerator and denominator orders, 
with the maximum number of derivatives at 0 and the Nyquist frequency ω=π 
both set to 0.
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IIR Filter Design
For example, when the two orders are the same, maxflat is the same as butter:

[b,a] = maxflat(3,3,0.25)

b =
    0.0317    0.0951    0.0951    0.0317

a =
    1.0000   –1.4590    0.9104   -0.1978

[b,a] = butter(3,0.25)

b =
    0.0317    0.0951    0.0951    0.0317

a =
    1.0000   –1.4590    0.9104   -0.1978

However, maxflat is more versatile, because you can design a filter with more 
zeros than poles:

[b,a] = maxflat(3,1,0.25)

b =
    0.0950    0.2849    0.2849    0.0950

a =
    1.0000   -0.2402

The third input to maxflat is the half-power frequency, a frequency between 
0 and 1 with a desired magnitude response of  . 

You can also design linear phase filters that have the maximally flat property 
using the 'sym' option:

maxflat(4,'sym',0.3)

ans =
    0.0331    0.2500    0.4337    0.2500    0.0331

 For complete details of the maxflat algorithm, see Selesnick and Burrus [2].

1 2⁄
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FIR Filter Design
Digital filters with finite-duration impulse response (all-zero, or FIR filters) 
have both advantages and disadvantages compared to infinite-duration 
impulse response (IIR) filters. 

FIR filters have the following primary advantages:

• They can have exactly linear phase.

• They are always stable.

• The design methods are generally linear.

• They can be realized efficiently in hardware.

• The filter startup transients have finite duration.

The primary disadvantage of FIR filters is that they often require a much 
higher filter order than IIR filters to achieve a given level of performance. 
6
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Correspondingly, the delay of these filters is often much greater than for an 
equal performance IIR filter.

Linear Phase Filters
Except for cremez, all of the FIR filter design functions design linear phase 
filters only. The filter coefficients, or “taps,” of such filters obey either an even 
or odd symmetry relation. Depending on this symmetry, and on whether the 
order n of the filter is even or odd, a linear phase filter (stored in length n+1 
vector b) has certain inherent restrictions on its frequency response:

Method Description Functions

Windowing Apply window to truncated 
inverse Fourier transform of 
desired “brickwall” filter

fir1,fir2,kaiserord

Multiband 
with 
Transition 
Bands

Equiripple or least squares 
approach over sub-bands of the 
frequency range

firls,remez,remezord

Constrained 
Least 
Squares

Minimize squared integral 
error over entire frequency 
range subject to maximum 
error constraints

fircls,fircls1

Arbitrary 
Response

Arbitrary responses, including 
nonlinear phase and complex 
filters

cremez

Raised 
Cosine

Lowpass response with 
smooth, sinusoidal transition

firrcos
2-17
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The phase delay and group delay of linear phase FIR filters are equal and 
constant over the frequency band. For an order n linear phase FIR filter, the 
group delay is n/2, and the filtered signal is simply delayed by n/2 time steps 
(and the magnitude of its Fourier transform is scaled by the filter’s magnitude 
response). This property preserves the wave shape of signals in the passband, 
that is, there is no phase distortion.

The functions fir1, fir2, firls, remez, fircls, fircls1, and firrcos all 
design type I and II linear phase FIR filters by default. Both firls and remez 
design type III and IV linear phase FIR filters given a 'hilbert' or 
'differentiator' flag. cremez can design any type of linear phase filter, and 
nonlinear phase filters as well.

NOTE  Because the frequency response of a type II filter is zero at the Nyquist 
rate (“high” frequency), fir1 does not design type II highpass and bandstop 
filters. For odd-valued n in these cases, fir1 adds 1 to the order and returns a 
type I filter. 

Windowing Method
Consider the ideal, or “brick-wall,” digital lowpass filter with a cutoff frequency 
of ω0 rad/sec. This filter has magnitude 1 at all frequencies with magnitude less 

Linear Phase
Filter Type

Filter 
Order n Symmetry of Coefficients

Response
H(f), f = 0

Response 
H(f), f = 1 
(Nyquist)

Type I Even Even: No restriction No restriction

Type II Odd No restriction H(1) = 0

Type III Even Odd: H(0) = 0 H(1) = 0

Type IV Odd H(0) = 0 No restriction

  b k b n k k n( ) ( ), , ,= + − = +2 1 1  K

  b k b n k k n( ) ( ), , ,= − + − = +2 1 1  K
8
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than ω0, and magnitude 0 at frequencies with magnitude between ω0 and π. Its 
impulse response sequence h(n) is

This filter is not implementable since its impulse response is infinite and 
noncausal. To create a finite-duration impulse response, truncate it by 
applying a window. By retaining the central section of impulse response in this 
truncation, you obtain a linear phase FIR filter. For example, a length 51 filter 
with a lowpass cutoff frequency ω0 of 0.4π rad/sec is

b = 0.4*sinc(0.4*(–25:25));

The window applied here is a simple rectangular or “boxcar” window. By 
Parseval’s theorem, this is the length 51 filter that best approximates the ideal 
lowpass filter, in the integrated least squares sense. To view its frequency 
response,

[H,w] = freqz(b,1,512,2);
plot(w,abs(H)), grid

Note the ringing and ripples in the response, especially near the band edge. 
This “Gibbs effect” does not vanish as the filter length increases, but a 
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nonrectangular window reduces its magnitude. Multiplication by a window in 
the time domain causes a convolution or smoothing in the frequency domain. 
Apply a length 51 Hamming window to the filter:

b = b.*hamming(51)';
[H,w] = freqz(b,1,512,2);
plot(w,abs(H)), grid

As you can see, this greatly reduces the ringing. This improvement is at the 
expense of transition width (the windowed version takes longer to ramp from 
passband to stopband) and optimality (the windowed version does not 
minimize the integrated squared error). 

The functions fir1 and fir2 are based on this windowing process. Given a 
filter order and description of an ideal desired filter, these functions return a 
windowed inverse Fourier transform of that ideal filter. Both use a Hamming 
window by default, but they accept any window function. See the “Windows” 
section of Chapter 4 for an overview of windows and their properties.

Standard Band FIR Filter Design: fir1
fir1 implements the classical method of windowed linear phase FIR digital 
filter design. It resembles the IIR filter design functions in that it is formulated 
to design filters in standard band configurations: lowpass, bandpass, highpass, 
and bandstop.
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FIR Filter Design
The statements

n = 50;
Wn = 0.4;
b = fir1(n,Wn);

create row vector b containing the coefficients of the order n 
Hamming-windowed filter. This is a lowpass, linear phase FIR filter with cutoff 
frequency Wn. Wn is a number between 0 and 1, where 1 corresponds to the 
Nyquist frequency, half the sampling frequency. (Unlike other methods, here 
Wn corresponds to the 6 dB point.) For a highpass filter, simply append the 
string 'high' to the function’s parameter list. For a bandpass or bandstop 
filter, specify Wn as a two-element vector containing the passband edge 
frequencies; append the string 'stop' for the bandstop configuration.

b = fir1(n,Wn,window) uses the window specified in column vector window for 
the design. The vector window must be n+1 elements long. If you do not specify 
a window, fir1 applies a Hamming window.

Kaiser Window Order Estimation. The kaiserord function estimates the filter 
order, cutoff frequency, and Kaiser window beta parameter needed to meet a 
given set of specifications. Given a vector of frequency band edges and a 
corresponding vector of magnitudes, as well as maximum allowable ripple, 
kaiserord returns appropriate input parameters for the fir1 function. For 
details on kaiserord, see the reference description in Chapter 6.

Multiband FIR Filter Design: fir2
The function fir2 also designs windowed FIR filters, but with an arbitrarily 
shaped piecewise linear frequency response. This is in contrast to fir1, which 
only designs filters in standard lowpass, highpass, bandpass, and bandstop 
configurations.

The commands

n = 50;
f = [0 .4 .5 1];
m = [1  1  0 0];
b = fir2(n,f,m);

return row vector b containing the n+1 coefficients of the order n FIR filter 
whose frequency-magnitude characteristics match those given by vectors f and 
m. f is a vector of frequency points ranging from 0 to 1, where 1 represents the 
2-21
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Nyquist frequency. m is a vector containing the desired magnitude response at 
the points specified in f. (The IIR counterpart of this function is yulewalk, 
which also designs filters based on arbitrary piecewise linear magnitude 
responses. See “IIR Filter Design” for details.)

Multiband FIR Filter Design with Transition Bands
The firls and remez functions provide a more general means of specifying the 
ideal desired filter than the fir1 and fir2 functions. These functions design 
Hilbert transformers, differentiators, and other filters with odd symmetric 
coefficients (type III and type IV linear phase). They also let you include 
transition or “don’t care” regions in which the error is not minimized, and 
perform band dependent weighting of the minimization.

firls is an extension of the fir1 and fir2 functions in that it minimizes the 
integral of the square of the error between the desired frequency response and 
the actual frequency response.

remez implements the Parks-McClellan algorithm, which uses the Remez 
exchange algorithm and Chebyshev approximation theory to design filters with 
optimal fits between the desired and actual frequency responses. The filters are 
optimal in the sense that they minimize the maximum error between the 
desired frequency response and the actual frequency response; they are 
sometimes called minimax filters. Filters designed in this way exhibit an 
equiripple behavior in their frequency response, and hence are also known as 
equiripple filters. The Parks-McClellan FIR filter design algorithm is perhaps 
the most popular and widely used FIR filter design methodology.

The syntax for firls and remez is the same; the only difference is their 
minimization schemes. The next example shows how filters designed with 
firls and remez reflect these different schemes. 

Basic Configurations
The default mode of operation of firls and remez is to design type I or type II 
linear phase filters, depending on whether the order you desire is even or odd, 
respectively. A lowpass example with approximate amplitude 1 from 0 to 0.4 
Hz, and approximate amplitude 0 from 0.5 to 1.0 Hz is

n = 20;            % filter order
f = [0 .4 .5 1];   % frequency band edges
a = [1  1  0 0];   % desired amplitudes
b = remez(n,f,a);
2
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From 0.4 to 0.5 Hz, remez performs no error minimization; this is a transition 
band or “don’t care” region. A transition band minimizes the error more in the 
bands that you do care about, at the expense of a slower transition rate. In this 
way, these types of filters have an inherent trade-off similar to FIR design by 
windowing.

To compare least squares to equiripple filter design, use firls to create a 
similar filter:

bb = firls(n,f,a);

and compare their frequency responses:

[H,w]=freqz(b);
[HH,w]=freqz(bb);
plot(w/pi,abs(H),w/pi,abs(HH),'--'), grid

You can see that the filter designed with remez exhibits equiripple behavior. 
Also note that the firls filter has a better response over most of the passband 
and stopband, but at the band edges (f = 0.4 and f = 0.5), the response is 
further away from the ideal than the remez filter. This shows that the remez 
filter’s maximum error over the pass- and stopbands is smaller and, in fact, it 
is the smallest possible for this band edge configuration and filter length.

Think of frequency bands as lines over short frequency intervals. remez and 
firls use this scheme to represent any piecewise linear desired function with 
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any transition bands. firls and remez design lowpass, highpass, bandpass, 
and bandstop filters; a bandpass example is

f = [0 .3  .4  .7  .8  1];  % band edges in pairs
a = [0  0   1   1   0  0];  % bandpass filter amplitude

Technically, these f and a vectors define five bands:

• Two stopbands, from 0.0 to 0.3 and from 0.8 to 1.0

• A passband from 0.4 to 0.7

• Two transition bands, from 0.3 to 0.4 and from 0.7 to 0.8

Example highpass and bandstop filters are

f = [0 .7  .8  1];  % band edges in pairs
a = [0  0   1  1];  % highpass filter amplitude

f = [0 .3  .4  .5  .8  1];  % band edges in pairs
a = [1  1   0   0   1  1];  % bandstop filter amplitude

An example multiband bandpass filter is 

f = [0 .1 .15 .25 .3 .4 .45 .55 .6 .7 .75 .85 .9 1];
a = [1  1  0   0   1  1  0   0   1  1   0   0  1 1];

Another possibility is a filter that has as a transition region the line connecting 
the passband with the stopband; this can help control “runaway” magnitude 
response in wide transition regions:

f = [0 .4 .42 .48 .5  1];
a = [1  1  .8  .2  0  0]; % passband, linear transition, stopband

The Weight Vector
Both firls and remez allow you to place more or less emphasis on minimizing 
the error in certain frequency bands relative to others. To do this, specify a 
weight vector following the frequency and amplitude vectors. An example 
4
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lowpass equiripple filter with 10 times less ripple in the stopband than the 
passband is

n = 20;            % filter order
f = [0 .4 .5 1];   % frequency band edges
a = [1  1  0 0];   % desired amplitudes
w = [1 10];        % weight vector
b = remez(n,f,a,w);

A legal weight vector is always half the length of the f and a vectors; there must 
be exactly one weight per band.

Anti-Symmetric Filters / Hilbert Transformers
When called with a trailing 'h' or 'Hilbert' option, remez and firls design 
FIR filters with odd symmetry, that is, type III (for even order) or type IV (for 
odd order) linear phase filters. An ideal Hilbert transformer has this 
anti-symmetry property and an amplitude of 1 across the entire frequency 
range. Try the following approximate Hilbert transformers:

b = remez(21,[.05 1],[1 1],'h');    % highpass Hilbert
bb = remez(20,[.05 .95],[1 1],'h'); % bandpass Hilbert

You can find the delayed Hilbert transform of a signal x by passing it through 
these filters:

Fs = 1000; % sampling frequency
t = (0:1/Fs:2)'; % two second time vector
x = sin(2*pi*300*t); % 300 Hz sine wave example signal
xh = filter(bb,1,x); % Hilbert transform of x
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The analytic signal corresponding to x is the complex signal that has x as its 
real part and the Hilbert transform of x as its imaginary part. For this FIR 
method (an alternative to the hilbert function), you must delay x by half the 
filter order to create the analytic signal:

xd = [zeros(10,1); x(1:length(x)–10)]; % delay 10 samples
xa = xd + j*xh;  % analytic signal

This method does not work directly for filters of odd order, which require a 
noninteger delay. In this case, the hilbert function, described in the 
“Specialized Transforms” section in Chapter 4, estimates the analytic signal. 
Alternately, use the resample function to delay the signal by a noninteger 
number of samples.

Differentiators
Differentiation of a signal in the time domain is equivalent to multiplication of 
the signal’s Fourier transform by an imaginary ramp function. That is, to 
differentiate a signal, pass it through a filter that has a response H(w) = jw. 
Approximate the ideal differentiator (with a delay) using remez or firls with 
a 'd' or 'differentiator' option:

b = remez(21,[0 1],[0 pi*Fs],'d');

To obtain the correct derivative, scale by pi*Fs rad/sec, where Fs is the 
sampling frequency in Hertz. For a type III filter, the differentiation band 
should stop short of the Nyquist frequency, and the amplitude vector must 
reflect that change to ensure the correct slope:

bb = remez(20,[0 .9],[0 .9*pi*Fs],'d');

In the 'd' mode, remez weights the error by 1/w in nonzero amplitude bands to 
minimize the maximum relative error. firls weights the error by (1/w)2 in 
nonzero amplitude bands in the 'd' mode.
6
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The magnitude response plots for the differentiators shown above are

Constrained Least Squares FIR Filter Design
The Constrained Least Squares (CLS) FIR filter design functions implement a 
technique that enables you to design FIR filters without explicitly defining the 
transition bands for the magnitude response. The ability to omit the 
specification of transition bands is useful in several situations. For example, it 
may not be clear where a rigidly defined transition band should appear if noise 
and signal information appear together in the same frequency band. Similarly, 
it may make sense to omit the specification of transition bands if they appear 
only to control the results of Gibbs phenomena that appear in the filter’s 
response. See Selesnick, Lang, and Burrus [2] for discussion of this method.

Instead of defining passbands, stopbands, and transition regions, the CLS 
method accepts a cutoff frequency (for the highpass, lowpass, bandpass, or 
bandstop cases), or passband and stopband edges (for multiband cases), for the 
desired response. In this way, the CLS method defines transition regions 
implicitly, rather than explicitly.

The key feature of the CLS method is that it enables you to define upper and 
lower thresholds that contain the maximum allowable ripple in the magnitude 
response. Given this constraint, the technique applies the least square error 
minimization technique over the frequency range of the filter’s response, 
instead of over specific bands. The error minimization includes any areas of 
discontinuity in the ideal, “brick wall” response. An additional benefit is that 

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

Differentiator, odd order

Frequency (Normalized)
0 100 200 300 400 500

0

500

1000

1500

2000

2500

3000

3500

Differentiator, even order

Frequency (Normalized)
2-27



2 Filter Design

2-2
the technique enables you to specify arbitrarily small peaks resulting from 
Gibbs’ phenomena.

There are two toolbox functions that implement this design technique:

For details on the calling syntax for these functions, see their reference 
descriptions in Chapter 6.

Basic Lowpass and Highpass CLS Filter Design
The most basic of the CLS design functions, fircls1, uses this technique to 
design lowpass and highpass FIR filters. As an example, consider designing a 
filter with order 61 impulse response and cutoff frequency of 0.3 (normalized). 
Further, define the upper and lower bounds that constrain the design process 
as

• Maximum passband deviation from 1 (passband ripple) of 0.02.

• Maximum stopband deviation from 0 (stopband ripple) of 0.008.

Description Function

Constrained least square multiband FIR filter design. fircls

Constrained least square filter design for lowpass and 
highpass linear phase filters

fircls1

0 ds = 0.0081
dp = 0.02
8



FIR Filter Design
To approach this design problem using fircls1:

n = 61;
wo = 0.3;
dp = 0.02;
ds = 0.008;
h = fircls1(n,wo,dp,ds,'plot');

Multiband CLS Filter Design
fircls uses the same technique to design FIR filters with a desired piecewise 
constant magnitude response. In this case, you can specify a vector of band 
edges and a corresponding vector of band amplitudes. In addition, you can 
specify the maximum amount of ripple for each band.

For example, assume the specifications for a filter call for

• From 0 to 0.3 (normalized): amplitude 0, upper bound 0.005, lower 
bound -0.005

• From 0.3 to 0.5: amplitude 0.5, upper bound 0.51, lower bound 0.49

• From 0.5 to 0.7: amplitude 0, upper bound 0.03, lower bound -0.03

• From 0.7 to 0.9: amplitude 1, upper bound 1.02, lower bound 0.98

• From 0.9 to 1: amplitude 0, upper bound 0.05, lower bound -0.05
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Design a CLS filter with impulse response order 129 that meets these 
specifications:

n = 129;
f = [0 0.3 0.5 0.7 0.9 1];
a = [0 0.5 0 1 0];
up = [0.005 0.51 0.03 1.02 0.05];
lo = [–0.005 0.49 –0.03 0.98 –0.05];
h = fircls(n,f,a,up,lo,'plot');

Weighted CLS Filter Design
Weighted CLS filter design lets you design lowpass or highpass FIR filters with 
relative weighting of the error minimization in each band. The fircls1 
function enables you to specify the passband and stopband edges for the least 
squares weighting function, as well as a constant k that specifies the ratio of 
the stopband to passband weighting.

For example, consider specifications that call for an FIR filter with impulse 
response order of 55 and cutoff frequency of 0.3 (normalized). Also assume 
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FIR Filter Design
maximum allowable passband ripple of 0.02 and maximum allowable stopband 
ripple of 0.004. In addition, add weighting requirements:

• Passband edge for the weight function of 0.28 (normalized)

• Stopband edge for the weight function of 0.32

• Weight error minimization 10 times as much in the stopband as in the 
passband

To approach this using fircls1:

n = 55;
wo = 0.3;
dp = 0.02;
ds = 0.004;
wp = 0.28;
ws = 0.32;
k = 10;
h = fircls1(n,wo,dp,ds,wp,ws,k,'plot');

Arbitrary-Response Filter Design
The cremez filter design function provides a tool for designing FIR filters with 
arbitrary complex responses. It differs from the other filter design functions in 
how the frequency response of the filter is specified: it accepts the name of a 
function which returns the filter response calculated over a grid of frequencies. 
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This capability makes cremez a highly versatile and powerful technique for 
filter design.

This design technique may be used to produce nonlinear-phase FIR filters, 
asymmetric frequency-response filters (with complex coefficients), or more 
symmetric filters with custom frequency responses.

The design algorithm optimizes the Chebyshev (or minimax) error using an 
extended Remez-exchange algorithm for an initial estimate. If this exchange 
method fails to obtain the optimal filter, the algorithm switches to an 
ascent-descent algorithm that takes over to finish the convergence to the 
optimal solution.

For details on the calling syntax for cremez, see the reference description in 
Chapter 6.

Multiband Filter Design
Consider a multiband filter with the following special frequency-domain 
characteristics:

A linear-phase multiband filter may be designed using the predefined 
frequency-response function multiband, as follows:

b = cremez(38, [–1 –0.5 –0.4 0.3 0.4 0.8], ...
               {’multiband’, [5 1 2 2 2 1]}, [1 10 5]);

For the specific case of a multiband filter, we can use a shorthand filter design 
notation similar to the syntax for remez:

b = cremez(38,[–1 –0.5 –0.4 0.3 0.4 0.8], ...
              [5 1 2 2 2 1], [1 10 5]);

Band Amplitude Optimization 
Weighting

[-1 -0.5] [5 1] 1

[-0.4 +0.3] [2 2] 10

[+0.4 +0.8] [2 1] 5
2



FIR Filter Design
As with remez, a vector of band edges is passed to cremez. This vector defines 
the frequency bands over which optimization is performed; note that there are 
two transition bands, from -0.5 to -0.4 and from 0.3 to 0.4.

In either case, the frequency response is obtained and plotted using linear 
scale:

[h,w] = freqz(b,1,512,’whole’);
plot(w/pi–1,fftshift(abs(h)));

Note that the frequency response has been calculated over the entire 
normalized frequency range [-1 +1] by passing the option 'whole' to freqz. In 
order to plot the negative frequency information in a natural way, the response 
has been “wrapped,” just as FFT data is, using fftshift:
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The filter response for this multiband filter is complex, which is expected 
because of the asymmetry in the frequency domain. The filter response is

Filter Design with Reduced Delay
Consider the design of a 62-tap lowpass filter with a half-Nyquist cutoff. If we 
specify a negative offset value to the lowpass filter design function, the group 
delay offset for the design is significantly less than that obtained for a standard 
linear-phase design. This filter design may be computed as follows:

b = cremez(61, [0 0.5 0.55 1], {'lowpass', –16});
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FIR Filter Design
The resulting magnitude response is:

[h,w] = freqz(b,1,512,'whole');
plot(w/pi–1,fftshift(abs(h)));

The group delay of the filter reveals that the offset has been reduced from
N/2=30.5 to N/2–16=14.5. Now, however, the group delay is no longer flat in 
the passband region (plotted over the normalized frequency range 0 to 0.5 for 
clarity):

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency

M
ag

ni
tu

de
 R

es
po

ns
e

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

12

13

14

15

16

17

Normalized frequency (Nyquist == 1)

G
ro

up
 d

el
ay

 (
in

 s
am

pl
es

)

2-35



2 Filter Design

2-3
If we compare this nonlinear-phase filter to a linear-phase filter that has 
exactly 14.5 samples of group delay, the resulting filter is of order 2*14.5 or 29. 
Using b = cremez(29,[0 0.5 0.55 1],'lowpass'), the passband and 
stopband ripple is much greater for the order 29 filter. These comparisons can 
assist you in deciding which filter is more appropriate for a specific application.
6



Special Topics in IIR Filter Design
Special Topics in IIR Filter Design
The classic IIR filter design technique finds an analog lowpass filter with cutoff 
frequency of 1, translates this “prototype” filter to the desired band 
configuration, then transforms the filter to the digital domain. The toolbox 
provides functions for each step of this process:

The butter, cheby1, cheby2, and ellip functions are sufficient for many 
design problems, and the lower level functions are generally not needed. But if 
you do have an application where you need to transform the band edges of an 
analog filter, or discretize a rational transfer function, this section describes 
tools to do so.

Classical IIR Filter Design

Analog Lowpass Prototype Creation Frequency Transformation Discretization
buttap
ellipap

cheb1ap
cheb2ap

besselap lp2lp
lp2bp

lp2hp
lp2bs

bilinear
impinvar

butter cheby1 cheby2 ellip besself

Minimum Order Computation for Classical IIR Filter Design

buttord cheb1ord cheb2ord ellipord

Complete Design
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Analog Prototype Design
This toolbox provides a number of functions to create lowpass analog prototype 
filters with cutoff frequency of 1, the first step in the classical approach to IIR 
filter design. The table below summarizes the analog prototype design 
functions for each supported filter type; plots for each type are shown in the 
“IIR Filter Design” section above.

Frequency Transformation
The second step in the analog prototyping design technique is the frequency 
transformation of a lowpass prototype. The toolbox provides a set of functions 
to transform analog lowpass prototypes (with cutoff frequency of 1 rad/sec) into 
bandpass, highpass, bandstop, and lowpass filters of the desired cutoff 
frequency:

Filter Type Analog Prototype Function

Bessel [z,p,k] = besselap(n)

Butterworth [z,p,k] = buttap(n)

Chebyshev type I [z,p,k] = cheb1ap(n,Rp)

Chebyshev type II [z,p,k] = cheb2ap(n,Rs)

Elliptic [z,p,k] = ellipap(n,Rp,Rs)
8



Special Topics in IIR Filter Design
As shown, all of the frequency transformation functions can accept two linear 
system models: transfer function and state-space form. For the bandpass and 
bandstop cases, 

and

 where ω1 is the lower band edge and ω2 is the upper band edge.

The frequency transformation functions perform frequency variable 
substitution. In the case of lp2bp and lp2bs, this is a second-order 
substitution, so the output filter is twice the order of the input. For lp2lp and 
lp2hp, the output filter is the same order as the input.

To begin designing an order 10 bandpass Chebyshev type I filter with a value 
of 3 dB for passband ripple:

[z,p,k] = cheb1ap(5,3);

Freq. Transformation Transformation Function

Lowpass to lowpass [numt,dent] = lp2lp(num,den,Wo)
[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo)

Lowpass to highpass [numt,dent] = lp2hp(num,den,Wo)
[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo)

Lowpass to bandpass [numt,dent] = lp2bp(num,den,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw)

Lowpass to bandstop [numt,dent] = lp2bs(num,den,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw)
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z, p, and k contain the poles, zeros, and gain of a lowpass analog filter with 
cutoff frequency Ωc equal to 1 rad/sec. Use the lp2bp function to transform this 
lowpass prototype to a bandpass analog filter with band edges W1 = π/5 and 
W2 = π. First, convert the filter to state-space form so the lp2bp function can 
accept it:

[A,B,C,D] = zp2ss(z,p,k); % Convert to state–space form.

Now, find the bandwidth and center frequency, and call lp2bp:

u1 = 0.1*2*pi;  u2 = 0.5*2*pi; % in radians per second
Bw = u2–u1;
Wo = sqrt(u1*u2);
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

Finally, calculate the frequency response and plot its magnitude:

[b,a] = ss2tf(At,Bt,Ct,Dt); % Convert to TF form.
w = linspace(.01,1,500)*2*pi; % Generate frequency vector.
h = freqs(b,a,w); % Compute frequency response.
semilogy(w/2/pi,abs(h)), grid % Plot log magnitude vs. freq.
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Special Topics in IIR Filter Design
Filter Discretization
The third step in the analog prototyping technique is the transformation of the 
filter to the discrete-time domain. The toolbox provides two methods for this: 
the impulse invariant and bilinear transformations. The filter design functions 
butter, cheby1, cheby2, and ellip use the bilinear transformation for 
discretization in this step.

Impulse Invariance
The toolbox function impinvar creates a digital filter whose impulse response 
is the samples of the continuous impulse response of an analog filter. This 
function only works on filters in transfer function form. For best results, the 
analog filter should have negligible frequency content above half the sampling 
frequency, because such high frequency content is aliased into lower bands 
upon sampling. Impulse invariance works for some lowpass and bandpass 
filters, but is not appropriate for highpass and bandstop filters.

Analog to Digital 
Transformation

Transformation Function

Impulse invariance [numd,dend] = impinvar(num,den,Fs)

Bilinear transform [zd,pd,kd] = bilinear(z,p,k,Fs,Fp)
[numd,dend] = bilinear(num,den,Fs,Fp)
[Ad,Bd,Cd,Dd] = 
bilinear(At,Bt,Ct,Dt,Fs,Fp)
2-41
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Design a Chebyshev type I filter and plot its frequency response:

[bz,az] = impinvar(b,a,2);
freqz(bz,az)

Impulse invariance retains the cutoff frequencies of 0.1 Hz and 0.5 Hz. 

Bilinear Transformation
The bilinear transformation is a nonlinear mapping of the continuous domain 
to the discrete domain; it maps the s-plane into the z-plane by

Bilinear transformation maps the jΩ axis of the continuous domain to the unit 
circle of the discrete domain according to

The toolbox function bilinear implements this operation, where the frequency 
warping constant k is equal to twice the sampling frequency (2*Fs) by default 
and equal to 2*pi*Fp/tan(pi*Fp/Fs) if you give bilinear a trailing argument 
that represents a “match” frequency Fp. If a match frequency Fp (in Hertz) is 
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Special Topics in IIR Filter Design
present, bilinear maps the frequency Ω = 2πfp (in radians/second) to the same 
frequency in the discrete domain, normalized to the sampling rate: ω = 2πfp/fs 
(also in radians/second). 

The bilinear function can perform this transformation on three different 
linear system representations: zero-pole-gain, transfer function, and 
state-space form. Try calling bilinear with the state-space matrices that 
describe the Chebyshev type I filter from the previous section, using a sampling 
frequency of 2 Hz, and retaining the lower band edge of 0.1 Hz:

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,2,0.1);

The frequency response of the resulting digital filter is

[bz,az] = ss2tf(Ad,Bd,Cd,Dd); % convert to TF
freqz(bz,az)

The lower band edge is at 0.1 Hz as expected. Notice, however, that the upper 
band edge is slightly less than 0.5 Hz, although in the analog domain it was 
exactly 0.5 Hz. This illustrates the nonlinear nature of the bilinear 
transformation. To counteract this nonlinearity, it is necessary to create analog 
domain filters with “prewarped” band edges, which map to the correct locations 
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upon bilinear transformation. Here the prewarped frequencies u1 and u2 
generate Bw and Wo for the lp2bp function: 

Fs = 2;                        % sampling frequency (Hertz)
u1 = 2*Fs*tan(.1*(2*pi/Fs)/2); % lower band edge (radians/second)
u2 = 2*Fs*tan(.5*(2*pi/Fs)/2); % upper band edge (radians/second)
Bw = u2–u1;                    % bandwidth
Wo = sqrt(u1*u2);              % center frequency
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

A digital bandpass filter with correct band edges 0.1 and 0.5 times the Nyquist 
frequency is

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,Fs);

The example bandpass filters from the last two sections could also be created 
in one statement using the complete IIR design function cheby1. For instance, 
an analog version of the example Chebyshev filter is

[b,a] = cheby1(5,3,[0.1 0.5]*2*pi,'s');

Note that the band edges are in radians/second for analog filters, whereas for 
the digital case, frequency is normalized (the Nyquist frequency is equal to 1 
Hz):

[bz,az] = cheby1(5,3,[0.1 0.5]);

All of the complete design functions call bilinear internally. They prewarp the 
band edges as needed to obtain the correct digital filter. See Chapter 6 for more 
on these functions.
4
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Correlation and Covariance
The Signal Processing Toolbox provides tools for estimating important 
functions of random signals. In particular, there are tools to estimate 
correlation and covariance sequences and spectral density functions of discrete 
signals. This chapter explains the correlation and covariance functions, and 
discusses the mathematically related functions for estimating the power 
spectrum.

The functions xcorr and xcov estimate the cross-correlation and 
cross-covariance sequences of random processes. They also handle 
autocorrelation and autocovariance as special cases. 

The true cross-correlation sequence is a statistical quantity defined as

where xn and yn are stationary random processes, - , and E{ } is the 
expected value operator. The cross-covariance sequence is the mean-removed 
cross-correlation sequence:

or, in terms of the cross-correlation:

In practice, you must estimate these sequences, because it is possible to access 
only a finite segment of the infinite-length random process. A common estimate 
based on N samples of xn and yn is the deterministic cross-correlation sequence 
(also called the time-ambiguity function):
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Correlation and Covariance
where we assume for this discussion that xn and yn are indexed from 0 to N-1, 
and  from -(N-1) to N-1. The xcorr function evaluates this sum with an 
efficient FFT-based algorithm, given inputs xn and yn stored in length N 
vectors x and y. Its operation is equivalent to convolution with one of the two 
subsequences reversed in time. 

For example,

x = [1 1 1 1 1]';
y = x;
xyc = xcorr(x,y)

xyc =

    1.0000
    2.0000
    3.0000
    4.0000
    5.0000
    4.0000
    3.0000
    2.0000
    1.0000

Notice that the resulting sequence is twice the length of the input sequence 
minus 1. Thus, the Nth element is the correlation at lag 0. Also notice the 
triangular pulse of the output that results when convolving two square pulses.

The xcov function estimates autocovariance and cross-covariance sequences. 
This function has the same options and evaluates the same sum as xcorr, but 
first removes the means of x and y.

Bias and Normalization
An estimate of a quantity is biased if its expected value is not equal to the 
quantity it estimates. The expected value of the output of xcorr is

ˆ ( )R mxy

E Rxy
ˆ m( ){ } E xn y∗n m+{ } N m–( )γxy m( )=

n 0=

N m– 1–

∑=
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xcorr provides the unbiased estimate, dividing by N-|m|, when you specify an 
'unbiased' flag after the input sequences:

xcorr(x,y,'unbiased')

Although this estimate is unbiased, the end points (near -(N-1) and N-1) suffer 
from large variance because xcorr computes them using only a few data points. 
A possible trade-off is to simply divide by N using the 'biased' flag:

xcorr(x,y,'biased')

With this scheme, only the sample of the correlation at 0 lag (the Nth output 
element) is unbiased. This estimate is often more desirable than the unbiased 
one because it avoids random large variations at the end points of the 
correlation sequence.

xcorr provides one other normalization scheme. The syntax

xcorr(x,y,'coeff')

divides the output by norm(x)*norm(y) so that, for autocorrelations, the 
sample at 0 lag is 1.

Multiple Channels
For a multichannel signal, xcorr and xcov estimate the autocorrelation and 
cross-correlation and covariance sequences for all of the channels at once. If S 
is an M-by-N signal matrix representing N channels in its columns, xcorr(S) 
returns a (2M-1)-by-N2 matrix with the autocorrelations and cross-correlations 
of the channels of S in its N2 columns. If S is a 3-channel signal

S = [s1 s2 s3]

then the result of xcorr(S) is organized as

R = [Rs1s1 Rs1s2 Rs1s3 Rs2s1 Rs2s2 Rs2s3 Rs3s1 Rs3s2 Rs3s3]

Two related functions, cov and corrcoef, are available in the standard 
MATLAB environment. They estimate covariance and normalized covariance 
respectively between the different channels at lag 0 and arrange them in a 
square matrix.



Spectral Analysis
Spectral Analysis
Spectral analysis seeks to describe the frequency content of a signal, random 
process, or system, based on a finite set of data. Estimation of power spectra is 
useful in a variety of applications, including the detection of signals buried in 
wide-band noise.

The power spectral density (PSD) of a stationary random process xn is related 
mathematically to the correlation sequence by the discrete-time Fourier 
transform:

This function of frequency has the property that its integral over a frequency 
band is equal to the power of the signal xn in that band. The PSD is a special 
case of the cross spectral density (CSD) function, defined between two signals 
xn and yn as

As is the case for the correlation and covariance sequences, the toolbox 
estimates the PSD and CSD because signal lengths are finite. 

The various methods of PSD estimation can be identified as parametric or 
nonparametric. One technique offered in the Signal Processing Toolbox is the 
popular nonparametric scheme developed by Welch [5]. This is complemented 
by more modern nonparametric techniques such as the multitaper method 
(MTM) and the multiple signal classification (MUSIC) or eigenvector (EV) 
method, which is well suited for line spectra (data made up of sinusoids). The 
Yule-Walker autoregressive (AR) method is a parametric method that estimates 
the autocorrelation function to solve for the AR model parameters. The Burg 
method is another parametric spectral estimation method that minimizes the 
forward and backward linear prediction errors while satisfying the 
Levinson-Durbin recursion. These methods are listed in the table below 
together with the corresponding toolbox function name. The number below 
each method name indicates the page that describes the method in greater 
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detail. See “Parametric Modeling” in Chapter 4 for details about lpc and other 
parametric estimation functions.

Welch’s Method
One way of estimating the power spectrum of a process is to simply find the 
discrete-time Fourier transform of the samples of the process (usually done on 
a grid with an FFT) and take the magnitude squared of the result. An example 
1001-element signal xn, which consists of two sinusoids plus noise, is given by

Fs = 1000;      % sampling frequency
t = 0:1/Fs:1;   % one second worth of samples
xn = sin(2*pi*50*t) + 2*sin(2*pi*120*t) + randn(size(t));

A crude estimate of the PSD of xn is

Pxx = abs(fft(xn,1024)).^2/1001;

This estimate is called the periodogram. Scale the magnitude squared of the 
FFT by the square of the norm of the data window applied to the signal (in this 

Method Description Functions
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Spectral Analysis
case, a length 1001 rectangular window) to ensure that the estimate is 
asymptotically unbiased. That is, as the number of samples increases, the 
expected value of the periodogram approaches the true PSD. The problem with 
the periodogram estimate is that its variance is large (on the order of the PSD 
squared) and does not decrease as the number of samples increases. The 
following two examples show this; as FFT length increases, the periodogram 
does not become smoother:

Pxx_short = abs(fft(xn,256)).^2/256;
plot((0:255)/256*Fs,10*log10(Pxx_short))
plot((0:1023)/1024*Fs,10*log10(Pxx))
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Reduce the variance of the PSD estimate by breaking the signal into 
nonoverlapping sections and averaging the periodograms of these sections:

Pxx = (abs(fft(xn(  1:256))).^2 + abs(fft(xn(257:512))).^2 + ...
       abs(fft(xn(513:768))).^2 ) / (256*3);
plot((0:255)/256*Fs,10*log10(Pxx))

This averaged estimate has one third the variance of the length 256 
periodogram shown earlier. The more sections you average, the lower the 
variance of the result. However, the signal length limits the number of sections 
possible (to three sections of length 256 in the previous example). To obtain 
more sections, break the signal into overlapping sections:

Pxx = (abs(fft(xn(  1:256))).^2 + abs(fft(xn(129:384))).^2 + ...
       abs(fft(xn(257:512))).^2 + abs(fft(xn(385:640))).^2 + ...
       abs(fft(xn(513:768))).^2 + ...
       abs(fft(xn(641:896))).^2 ) / (256*6);
plot((0:255)/256*Fs,10*log10(Pxx))
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Spectral Analysis
In this case the sections are statistically dependent, resulting in higher 
variance; thus there is a trade-off between the number of sections and the 
overlap rate.

Another way to improve the periodogram estimate is to apply a nonrectangular 
data window to the sections prior to computing the periodogram, resulting in a 
modified periodogram. This reduces the effect of section dependence due to 
overlap, because the window is tapered to 0 on the edges. Also, a 
nonrectangular window diminishes the side-lobe interference or “spectral 
leakage” while increasing the width of spectral peaks. With a suitable window 
(such as Hamming, Hanning, or Kaiser), overlap rates of about half the section 
length have been found to lower the variance of the estimate significantly. 

The application of a Hanning window results in

w = hanning(256)';
Pxx =  ( abs(fft(w.*xn(  1:256))).^2 + ...
         abs(fft(w.*xn(129:384))).^2 + ...
         abs(fft(w.*xn(257:512))).^2 + ...
         abs(fft(w.*xn(385:640))).^2 + ...
         abs(fft(w.*xn(513:768))).^2 + ...
         abs(fft(w.*xn(641:896))).^2 ) / (norm(w)^2*6);
plot((0:255)/256*Fs,10*log10(Pxx))

Notice in this plot that the spectral peaks have widened, and the noise floor, or 
level of the noise, seems to be the flattest of any estimate so far. This method 
of averaged, modified periodograms is Welch’s method of PSD estimation.

The functions psd and csd provide control over all the parameters discussed so 
far (FFT length, window, and amount of overlap) in computing the PSD and 
CSD of one or two signals using Welch’s method.
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For a more detailed discussion of Welch’s method of PSD estimation, see 
Kay [1] and Welch [5].

Power Spectral Density Function
The psd function averages and scales the modified periodograms of detrended 
sections of a signal. Simply specify the parameters that control the algorithm 
as arguments to the function. 

An estimate for the PSD of a sequence xn using psd’s default FFT length (256), 
window (Hanning of length 256), overlap samples (none), and detrending 
option (remove best linear fit from sections) is

Pxx = psd(xn);

If the original sequence xn has units of volts, Pxx has units of volts2/Hz. 

To recreate the last example accurately, specify 128 as the number of samples 
to overlap and ask for no detrending:

nfft = 256;                % length of FFT
Fs = 1000;                 % sampling frequency
window = hanning(256);     % window function
noverlap = 128;            % number of samples overlap
dflag = 'none';            % detrending option
Pxx = psd(xn,nfft,Fs,window,noverlap,dflag);

The order of the inputs to psd is important, except for the dflag string, which 
can be in any position as long as it is last. The sampling frequency doesn’t affect 
the PSD estimate but helps psd scale the frequency axis for plotting. psd 
without any outputs generates a plot:

psd(xn,nfft,Fs,window,noverlap,dflag)
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Spectral Analysis
If you want to plot the PSD yourself, obtain a frequency vector through an 
additional output argument:

[Pxx,f] = psd(xn,nfft,Fs,256,noverlap,dflag);
plot(f,10*log10(Pxx))

Since the signal xn is real, psd returns only the frequencies from 0 through the 
Nyquist frequency. In contrast, the earlier FFT example generated PSD 
estimates ranging from 0 through the sampling frequency.

Bias and Normalization in Welch’s Method
In studying the output of psd shown earlier, several revealing characteristics 
about the signal xn are evident. The noise floor is flat at 0 decibels (dB), 
implying white noise of variance 1. Furthermore, the “signal” part of xn is 
concentrated in two peaks at 50 and 120 Hz. The relation of the peak heights 
is meaningful. For instance, the 50 Hz peak is 6 dB below the 120 Hz peak, 
verifying that the higher frequency sinusoid has twice the magnitude as the 
lower (106/20 = 2.0). Unlike the relative heights, the actual height of the peaks 
does not tell us much about the original amplitude of the sinusoids without 
some more analysis.

To obtain useful information about the peak amplitudes of the underlying 
sinusoids, note that the expected value of the estimated PSD is

Since the expected value is not equal to the true PSD, the estimate is biased. 
This quantity is the convolution of the true PSD with the squared magnitude 
of the window’s discrete-time Fourier transform W(ω), scaled by the squared 
norm of the window. The scaling factor is the sum of the squares of the window 
function:

This says that if Pxx(ω) has a peak of height 1 at a particular frequency ω0, the 
estimate will have approximate height  at that frequency, provided 
the window W(ω) is narrow with respect to the spacing between the peak and 
other spectral features. So, to obtain an estimate of the height of the original 
peaks, multiply the result of psd by norm(w)^2/sum(w)^2, where w is the 
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window vector. This scaling is independent of window length and shape. For 
example:

w1 = hanning(256); w2 = hanning(500);
[Pxx1,f1] = psd(xn,256,Fs,w1,128,'none');
[Pxx2,f2] = psd(xn,1024,Fs,w2,250,'none');
plot(f1,10*log10(Pxx1*norm(w1)^2/sum(w1)^2))
plot(f2,10*log10(Pxx2*norm(w2)^2/sum(w2)^2))

In both plots, which show the spectrum at positive frequencies only (the 
negative frequencies are the same), the higher frequency peak has a value of 0 
dB, and the lower frequency peak is at -6 dB. The 120 Hz sinusoid height of 0 
dB corresponds to a squared amplitude of 1. This results from the sinusoid of 
amplitude 2 having complex exponential components of amplitude 1 at both 
positive and negative frequency. Similarly, the 50 Hz sinusoid has both 
positive and negative frequency components with squared amplitude of (∫)2 = π, 
or 10*log10(.25) = -6 dB, as shown in the plot. Also, note that the second plot 
reflects a slightly lower noise floor, which is the result of a longer window 
length.
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Spectral Analysis
Parseval’s Relation
According to Parseval’s relation, the integral of the PSD across the entire band 
is a measure of the total energy of the signal. The results of psd can 
approximately verify this:

[Pxx,f] = psd(xn,256,Fs,256,128,'none');
format long
sum(xn.^2)/length(xn)

ans =

   3.60376766505040

sum(Pxx)/length(Pxx)

ans =

   3.68430077838701

To approximate the percentage of energy the signal has in a given frequency 
band, sum the PSD estimate at the desired frequency points only. The 
percentage of energy of xn in the band from 40 to 60 Hz is

ind = find(f>40 & f<60)

ind =

    12
    13
    14
    15
    16

sum(Pxx(ind))/sum(Pxx)

ans =

   0.13369450463404

Cross-Spectral Density Function
To estimate the cross-spectral density of two equal length signals x and y using 
Welch’s method, the csd function forms the periodogram as the product of the 
FFT of x and the conjugate of the FFT of y. Unlike the real-valued PSD, the 
3-13
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CSD is a complex function. csd handles the sectioning, detrending, and 
windowing of x and y in the same way as the psd function:

Pxy = csd(x,y,nfft,Fs,window,noverlap,dflag)

Confidence Intervals
Both the psd and csd functions can compute confidence intervals. Simply 
provide an input argument p, which specifies the percentage of the confidence 
interval:

[Pxx,Pxxc,f] = psd(x,nfft,Fs,window,noverlap,p,dflag)
[Pxy,Pxyc,f] = csd(x,y,nfft,Fs,window,noverlap,p,dflag)

p must be a scalar between 0 and 1. The functions assume chi-squared 
distributed periodograms of nonoverlapping sections in computing the 
confidence intervals. (This assumption is valid when the signal is a Gaussian 
distributed random process.) Provided these assumptions are correct, there is 
a p*100% probability that the confidence interval

[Pxx–Pxxc(:,1) Pxx+Pxxc(:,2)] 

covers the true PSD. If the sections overlap, the confidence interval is not 
reliable and the functions display a warning message.

Transfer Function Estimate
One application of Welch’s method is nonparametric system identification. 
Assume that H is a linear, time invariant system, and x(n) and y(n) are the 
input to and output of H, respectively. Then the PSD of x(n) is related to the 
CSD of x(n) and y(n) as

An estimate of the transfer function between x(n) and y(n) is

This method estimates both magnitude and phase information. The tfe 
function uses Welch’s method to compute the CSD and PSD and then forms 
their quotient for the transfer function estimate. Use tfe the same way that 
you use the csd function.
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Spectral Analysis
Filter the signal xn with an FIR filter, then plot the actual magnitude response 
and the estimated response:

h = ones(1,10)/10; % moving average filter
yn = filter(h,1,xn);
[HEST,f] = tfe(xn,yn,256,Fs,256,128,'none');
H = freqz(h,1,f,Fs);
plot(f,abs(H)); plot(f,abs(HEST));

Coherence Function
The magnitude-squared coherence between two signals x(n) and y(n) is

This quotient is a real number between 0 and 1 that measures the correlation 
between x(n) and y(n) at the frequency ω.
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The cohere function takes sequences x and y, computes their PSDs and CSD, 
and returns the quotient of the magnitude squared of the CSD and the product 
of the PSDs. Its options and operation are similar to the csd and tfe functions.

The coherence function of xn and the filter output yn versus frequency is

cohere(xn,yn,256,Fs,256,128,'none')

If the input sequence length, window length, and overlap are such that cohere 
operates on only a single record, the function returns all ones.

Multitaper Method
The multitaper method (MTM) uses orthogonal windows (or “tapers”) to obtain 
approximately independent estimates of the power spectrum and then 
combines them to yield an estimate. This estimate exhibits more degrees of 
freedom and allows for easier quantification of the bias and variance trade-offs, 
compared to conventional periodogram methods. Many conventional spectral 
estimates use a single taper (or “window”), with some irretrievable loss of 
information at the beginning and the end of the series. In the multitaper 
method, additional tapers are used to recover some of the lost information.

This brief discussion of the multitaper method provides an intuitive look at the 
algorithm to assist in determining when to use it. For a more detailed and 
thorough explanation, see Percival and Walden [3].

The simple parameter for the multitaper method is the time-bandwidth 
product, NW. This parameter is a “resolution” parameter directly related to the 
number of tapers used to compute the spectrum. There are always 2*NW-1 
tapers used to form the estimate. This means that as NW increases, there are 
more estimates of the power spectrum and the variance of the estimate 
decreases. However, the bandwidth of each taper is also proportional to NW, so 
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Spectral Analysis
as NW increases, each estimate exhibits more spectral leakage (i.e., wider 
peaks) and the overall spectral estimate is more biased. For each data set, 
there is usually a value for NW that allows an optimal trade-off between bias 
and variance.

Using pmtm on the data from the previous section, xn, yields

Fs = 1000;
t = 0:1/Fs:1;
randn('seed',0)
xn = sin(2*pi*50*t) + 2*sin(2*pi*120*t) + randn(size(t));

[P,f] = pmtm(xn,4,1024,Fs);
plot(f,10*log10(P))  % plot in decibels
axis([30 150 -20 30])
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By lowering the time-bandwidth product, the peaks become narrower:

[P1,f] = pmtm(xn,3/2,1024,Fs);
plot(f,10*log10(P1))  % plot in decibels
axis([30 150 -20 30])

Note that the area under the peaks remains about the same, as can be seen 
when both are plotted together on a linear scale:

plot(f,[P P1])
axis([30 150 0 400])
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Spectral Analysis
This conservation of total power is verifiable numerically:

sum(P)

ans = 

    1.8447e+03

sum(P1)

ans = 

    1.8699e+03

Note that total power is only approximately conserved in this case. This is 
because the adaptive weighting procedure that is used to minimize leakage 
does not strictly conserve total power.

This method is more expensive computationally than Welch’s method, because 
of the cost of computing the discrete prolate spheroidal sequences (DPSSs, also 
known as Slepian sequences). For long data series (10,000 points or more), it is 
useful to compute the DPSSs once and save them in a MAT-file. The M-files 
dpsssave, dpssload, dpssdir, and dpssclear are provided, to keep a database 
of saved DPSSs in the MAT-file dpss.mat.

Yule-Walker AR Method
The Yule-Walker AR method is an autoregressive technique for spectral density 
estimation (see Marple [2], Chapter 7, and Proakis[4], Section 12.3.2). This 
method solves for the AR model parameters by the autocorrelation method.

The Yule-Walker AR estimate is obtained by solution of the normal equations:

Here, a = [1 a(2) ... a(n+1)] is a vector of autoregressive coefficients, the 
elements of vector r = [r(1) r(2) ... r(n+1)] are correlations, and the left-hand 
side autocorrelation matrix is Hermitian Toeplitz and positive definite. 
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The spectral density estimate is

where e(f) is a complex sinusoid.

The toolbox function pyulear implements the Yule-Walker AR method.

For example, compare the spectrum of a speech signal using Welch’s method 
and Yule-Walker AR:

load mtlb
[P1,f]=psd(mtlb,1024,Fs,256);
[P2,f]=pyulear(mtlb,14,1024,Fs);  % 14th order model
plot(f,10*log10(P1),':',f,10*log10(P2))
legend('Welch','Yule–Walker AR')

The solid Yule-Walker AR spectrum is smoother than the periodogram because 
of the simple underlying all-pole model.

Burg Method
The Burg method for AR spectral estimation is based on minimizing the 
forward and backward prediction errors while satisfying the Levinson-Durbin 
recursion (see Marple[2], Chapter 7, and Proakis[4], Section 12.3.3). In 
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Spectral Analysis
contrast to other AR estimation methods, the Burg method avoids calculating 
the autocorrelation function, and instead estimates the reflection coefficients 
directly. 

The primary advantages of the Burg method are resolving closely spaced 
sinusoids in signals with low noise levels, and estimating short data records, in 
which case the AR power spectral density estimates are very close to the true 
values. In addition, the Burg method ensures a stable AR model and is 
computationally efficient. 

The accuracy of the Burg method is lower for high-order models, long data 
records, and high signal-to-noise ratios (which can cause line splitting, or the 
generation of extraneous peaks in the spectrum estimate). The spectral density 
estimate computed by the Burg method is also susceptible to frequency shifts 
(relative to the true frequency) resulting from the initial phase of noisy 
sinusoidal signals. This effect is magnified when analyzing short data 
sequences. 

The toolbox function pburg implements the Burg method.
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Compare the spectrum of a noisy signal computed using the Burg method and 
the Welch method:

Fs = 1000;
t = 0:1/Fs:1;
xn = sin(2*pi*50*t) + 2*sin(2*pi*120*t) + randn(size(t));
[P1,f] = psd(xn,1024 ,Fs);
[P2,f] = pburg(xn,17,1024,Fs);   % 17th order model
plot(f,10*log10(P1),':',f,10*log10(P2)), grid
axis([0 200 –25 30])
legend('Welch','Burg')

Note that as the model order for the Burg method is reduced, a frequency shift 
due to the initial phase of the sinusoids will become apparent. 

MUSIC and Eigenvector Analysis Methods
The pmusic function provides two related spectral analysis methods:

• The multiple signal classification method (MUSIC) developed by Schmidt

• The eigenvector (EV) method developed by Johnson

See Marple [2] (pgs. 373-378) for a summary of these methods.

Both of these methods are frequency estimator techniques based on 
eigenanalysis of the autocorrelation matrix. This type of spectral analysis 
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Spectral Analysis
categorizes the information in a correlation or data matrix, assigning 
information to either a signal subspace or a noise subspace. 

Eigenanalysis Overview
Consider a number of complex sinusoids embedded in white noise. You can 
write the autocorrelation matrix R for this system as the sum of the signal 
autocorrelation matrix (S) and the noise autocorrelation matrix (W). 

There is a close relationship between the eigenvectors of the signal 
autocorrelation matrix and the signal and noise subspaces. The eigenvectors v 
of S span the same signal subspace as the signal vectors. If the system contains 
M complex sinusoids and the order of the autocorrelation matrix is p, 
eigenvectors vM+1 through vp+1 span the noise subspace of the autocorrelation 
matrix.

Frequency Estimator Functions. To generate their frequency estimates, 
eigenanalysis methods calculate functions of the vectors in the signal and noise 
subspaces. Both the MUSIC and EV techniques choose a function that 
theoretically goes to infinity at one of the sinusoidal frequencies in the input 
signal. Using digital technology, the resulting estimate has sharp peaks at the 
frequencies of interest; this means that there won’t be infinity values in the 
vectors.

The MUSIC estimate is given by the formula

where N is the size of the eigenvectors and e(f) is a complex sinusoid vector:

v represents the eigenvectors of the input signal’s correlation matrix; vk is the 
kth eigenvector. H is the conjugate transpose operator. The eigenvectors used 
in the sum correspond to the smallest eigenvalues and span the noise subspace 
(p is the size of the signal subspace). 
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The expression

is equivalent to a Fourier transform (the vector e(f) consists of complex 
exponentials). This form is useful for numeric computation because the FFT 
can be computed for each vk and then the squared magnitudes can be summed.

The EV method weights the summation by the eigenvalues of the correlation 
matrix:

The pmusic function in this toolbox uses the svd (singular value decomposition) 
function in the signal case and the eig function for analyzing the correlation 
matrix and assigning eigenvectors to the signal or noise subspaces. When svd 
is used, pmusic never computes the correlation matrix explicitly, but the 
singular values are the eigenvalues.

Controlling Subspace Thresholds
To provide user control over the assignments of eigenvectors to the signal and 
noise subspaces, the pmusic function accepts a threshold argument thresh. 
thresh is a two-element vector where the first element is the number of 
eigenvectors spanning the signal subspace and the second element is a 
threshold test:

• If thresh(2) ≤ 1, then thresh(1) specifies the number of eigenvectors 
spanning the signal subspace. In this case the values of thresh(1) must be 
in the range [0, N), where N is 

- The column length of xR if xR is a data matrix

- The matrix size if xR is a correlation matrix

- The window length if xR is a signal vector

• If thresh(1)≥ N, then thresh(2) is a value greater than or equal to 1 that 
specifies the absolute threshold for splitting the eigenvalues between the 
signal and noise subspaces. That is, if a given eigenvalue is less than or equal 

vk
H

e f( )

Pev f( ) 1

vk
H

e f( )
2

k p 1+=

N

∑ 
 
 

λk⁄

------------------------------------------------------------=
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to the product thresh(2)min{λk}, then the given eigenvector is assigned to 
the noise subspace.

• If thresh(1) < N and thresh(2) ≥ 1, thresh(1) still specifies the maximum 
number of eigenvectors in the signal subspace. However, the threshold test 
specified by thresh(2) can also assign eigenvectors to the noise subspace.

• If thresh(1) ≥ N and thresh(2) < 1, there are no noise eigenvectors. This is 
an invalid case and pmusic generates an error.

For complete details on using the thresh parameter, see the reference 
description of pmusic in Chapter 6.
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Windows
In both digital filter design and power spectrum estimation, the choice of a 
windowing function can play an important role in determining the quality of 
overall results. The main role of the window is to damp out the effects of the 
Gibbs phenomenon that results from truncation of an infinite series.

The toolbox window functions are

Basic Shapes
The basic window is the rectangular window, a vector of ones of the appropriate 
length. A rectangular window of length 50 is

n = 50;
w = boxcar(n);

This toolbox stores windows in column vectors by convention, so an equivalent 
expression is

w = ones(50,1);

The Bartlett (or triangular) window is the convolution of two rectangular 
windows. The functions bartlett and triang compute similar triangular 
windows, with three important differences. The bartlett function always 

Window Function

Bartlett window bartlett

Blackman window blackman

Rectangular window boxcar

Chebyshev window chebwin

Hamming window hamming

Hanning window hanning

Kaiser window kaiser

Triangular window triang
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returns a window with two zeros on the ends of the sequence, so that for n odd, 
the center section of bartlett(n+2) is equivalent to triang(n):

bartlett(7)

ans =

         0
    0.3333
    0.6667
    1.0000
    0.6667
    0.3333
         0

triang(5)

ans =

    0.3333
    0.6667
    1.0000
    0.6667
    0.3333

For n even, bartlett is still the convolution of two rectangular sequences. 
There is no standard definition for the triangular window for n even; the slopes 
of the line segments of triang’s result are slightly steeper than those of 
bartlett’s in this case: 

w = bartlett(8); 
[w(2:7)  triang(6)]

ans =

    0.2857    0.1667
    0.5714    0.5000
    0.8571    0.8333
    0.8571    0.8333
    0.5714    0.5000
    0.2857    0.1667

The final difference between the Bartlett and triangular windows is evident in 
the Fourier transforms of these functions. The Fourier transform of a Bartlett 
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window is negative for n even. The Fourier transform of a triangular window, 
however, is always nonnegative.

This difference can be important when choosing a window for some spectral 
estimation techniques, such as the Blackman-Tukey method. Blackman-Tukey 
forms the spectral estimate by calculating the Fourier transform of the 
autocorrelation sequence. The resulting estimate might be negative at some 
frequencies if the window’s Fourier transform is negative (see Kay [1], pg. 80).

Generalized Cosine Windows
Blackman, Hamming, Hanning, and rectangular windows are all special cases 
of the generalized cosine window. These windows are combinations of 
sinusoidal sequences with frequencies 0, 2π/(N-1), and 4π/(N-1), where N is the 
window length. One way to generate them is

ind = (0:n–1)'*2*pi/(n–1);
w = A – B*cos(ind) + C*cos(2*ind);

where A, B, and C are constants you define. The concept behind these windows 
is that by summing the individual terms to form the window, the low frequency 
peaks in the frequency domain combine in such a way as to decrease sidelobe 
height. This has the side effect of increasing the mainlobe width.

The Hamming and Hanning windows are two-term generalized cosine 
windows, given by A = 0.54, B = 0.46 for Hamming and A = 0.5, B = 0.5 for 
Hanning (C = 0 in both cases). The hamming and hanning functions, 
respectively, compute these windows.

Note that the definition of the generalized cosine window shown in the earlier 
MATLAB code yields zeros at samples 1 and n for A = 0.5 and B = 0.5. To 
eliminate these zeros on the edges of the window, hanning uses a cosine of 
frequency 2π/(N+1) instead of 2π/(N-1).

The Blackman window is a popular three-term window, given by 
A = 0.42, B = 0.5, C = 0.08. The blackman function computes this window.

Kaiser Window
The Kaiser window is an approximation to the prolate-spheroidal window, for 
which the ratio of the mainlobe energy to the sidelobe energy is maximized. For 
a Kaiser window of a particular length, the parameter β controls the sidelobe 
height. For a given β, the sidelobe height is fixed with respect to window length. 
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The statement kaiser(n,beta) computes a length n Kaiser window with 
parameter beta. 

Examples of Kaiser windows with length 50 and various values for the beta 
parameter are

n = 50;
w1 = kaiser(n,1);
w2 = kaiser(n,4);
w3 = kaiser(n,9);
[W1,f] = freqz(w1/sum(w1),1,512,2);
[W2,f] = freqz(w2/sum(w2),1,512,2);
[W3,f] = freqz(w3/sum(w3),1,512,2);
plot(f,20*log10(abs([W1 W2 W3])))
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As β increases, the sidelobe height decreases and the mainlobe width increases. 
To see how the sidelobe height stays the same for a fixed β parameter as the 
length is varied, try

w1 = kaiser(50,4);
w2 = kaiser(20,4);
w3 = kaiser(101,4);
[W1,f] = freqz(w1/sum(w1),1,512,2);
[W2,f] = freqz(w2/sum(w2),1,512,2);
[W3,f] = freqz(w3/sum(w3),1,512,2);
plot(f,20*log10(abs([W1 W2 W3])))
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Kaiser Windows in FIR Design
There are two design formulas that can help you design FIR filters to meet a 
set of filter specifications using a Kaiser window. To achieve a sidelobe height 
of −α dB, the beta parameter is

For a transition width of ∆ω rad/sec, use the length

Filters designed using these heuristics will meet the specifications 
approximately, but you should verify this. To design a lowpass filter with cutoff 
frequency 0.5π rad/sec, transition width 0.2π rad/sec, and 40 dB of attenuation 
in the stopband, try

[n,wn,beta] = kaiserord([0.4 0.6]*pi,[1 0],[0.01 0.01],2*pi);
h = fir1(n,wn,kaiser(n+1,beta),'noscale');

The kaiserord function estimates the filter order, cutoff frequency, and Kaiser 
window beta parameter needed to meet a given set of frequency domain 
specifications.
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The ripple in the passband is roughly the same as the ripple in the stopband. 
As you can see from the frequency response, this filter nearly meets the 
specifications:

[H,f] = freqz(h,1,512,2);
plot(f,20*log10(abs(H))), grid

For details on kaiserord, see the reference description in Chapter 6.
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Chebyshev Window
The Chebyshev window minimizes the mainlobe width, given a particular 
sidelobe height. It is characterized by an equiripple behavior, that is, its 
sidelobes all have the same height. The chebwin function, with length and 
sidelobe height parameters, computes a Chebyshev window:

n = 51;
Rs = 40;  % sidelobe height in decibels
w = chebwin(n,Rs);
stem(w)

As shown in the plot, the Chebyshev window has large spikes at its outer 
samples.

Plot the frequency response to see the equiripples at -40 dB:

[W,f] = freqz(w,1,512,2);
plot(f,20*log10(abs(W)/sum(w))), grid

For a detailed discussion of the characteristics and applications of the various 
window types, see Oppenheim and Schafer [2], pgs. 444-462, and Parks and 
Burrus [3], pgs. 71-73.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Sample Number

Length 51 Chebyshev Window

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-80

-60

-40

-20

0

Normalized Frequency (Nyquist == 1)

N
or

m
ai

lz
ed

 M
ag

ni
tu

de
 (

dB
)

Chebyshev Window Magnitude Response
4-9



4 Special Topics

4-1
Parametric Modeling
Parametric modeling techniques find the parameters for a mathematical model 
describing a signal, system, or process. These techniques use known 
information about the system to determine the model. Applications for 
parametric modeling include speech and music synthesis, data compression, 
high-resolution spectral estimation, communications, manufacturing, and 
simulation.

The toolbox parametric modeling functions operate with the rational transfer 
function model. Given appropriate information about an unknown system 
(impulse or frequency response data, or input and output sequences), these 
functions find the coefficients of a linear system that models the system.

One important application of the parametric modeling functions is in the 
design of filters that have a prescribed time or frequency response. These 
functions provide a data-oriented alternative to the IIR and FIR filter design 
functions discussed in Chapter 2.

Here is a summary of the parametric modeling functions in this toolbox. Note 
that the System Identification Toolbox provides a more extensive collection of 
parametric modeling functions.

Domain Functions Description

Time lpc,
levinson

Linear Predictive Coding. Generate all-pole recursive filter whose 
impulse response matches a given sequence.

prony Generate IIR filter whose impulse response matches a given 
sequence.

stmcb Find IIR filter whose output, given a specified input sequence, 
matches a given output sequence.

Frequency invfreqz,
invfreqs

Generate digital or analog filter coefficients given complex 
frequency response data.

pburg Generate IIR filter coefficients that model an input data sequence 
using the Levinson-Durbin algorithm (see Chapter 3).
0
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Because yulewalk is geared explicitly toward ARMA filter design, it is 
discussed in Chapter 2. pburg and pyulear are discussed in Chapter 3 along 
with the other (nonparametric) spectral estimation methods.

Time-Domain Based Modeling
The lpc, prony, and stmcb functions find the coefficients of a digital rational 
transfer function that approximates a given time-domain impulse response. 
lpc is restricted to all-pole models, and stmcb can accept an input (besides an 
impulse) that causes the output response. The algorithms differ in complexity 
and accuracy of the resulting model.

Linear Prediction (AR Modeling)
Linear prediction models a given signal x as the impulse response of an all-pole 
filter. It assumes that each output sample of a signal, x(k), is a linear 
combination of the past n outputs (that is, it can be “linearly predicted” from 
these outputs), and that the coefficients are constant from sample to sample:

An nth-order all-pole model of a signal x is

a = lpc(x,n)

lpc uses the autocorrelation method of all-pole modeling to find the linear 
prediction coefficients. This technique is also called the Yule-Walker AR 
method of spectral analysis. The filter generated is stable, but it might not 
model the process exactly even if the data sequence is truly an autoregressive 
(AR) process of the correct order. This is because the autocorrelation method 
implicitly windows the data, that is, it assumes that signal samples beyond the 
length of x are 0.

pyulear Generate IIR filter coefficients that model an input data sequence 
using an estimate of the autocorrelation function (see Chapter 3).

yulewalk Generate IIR filter that matches piecewise linear magnitude 
response by solving modified Yule-Walker equations (see Chapter 2).

Domain Functions Description

  x k a x k a x k a n x k n( ) ( ) ( ) ( ) ( ) ( ) ( )= − − − − − − + −2 1 3 2 1L
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To illustrate lpc, create a sample signal that is the impulse response of an 
all-pole filter with additive white noise:

randn('seed',0)
x = impz(1,[1 0.1 0.1 0.1 0.1],10) + randn(10,1)/10;

The coefficients for a fourth-order all-pole filter that models the system are

a = lpc(x,4)

a = 
     1.0000     0.0395     0.0338     0.0668     0.1264

lpc first calls xcorr to find a biased estimate of the correlation function of x, 
and then uses the Levinson-Durbin recursion, implemented in the levinson 
function, to find the model coefficients a. The Levinson-Durbin recursion is a 
fast algorithm for solving a system of symmetric Toeplitz linear equations. 
lpc’s entire algorithm for n = 4 is

r = xcorr(x);
r(1:length(x)–1) = []; % remove corr. at negative lags
a = levinson(r,4)

a = 
     1.0000     0.0395     0.0338     0.0668     0.1264

You could form the linear prediction coefficients with other assumptions by 
passing a different correlation estimate to levinson, such as the unbiased 
correlation estimate:

r = xcorr(x,'unbiased');
r(1:length(x)–1) = []; % remove corr. at negative lags
a = levinson(r,4)

a = 
     1.0000     0.0554     0.0462     0.0974     0.2115

Prony’s Method (ARMA Modeling)
The prony function models a signal using a specified number of poles and zeros. 
Given a sequence x and numerator and denominator orders nb and na, 
respectively, the statement

[b,a] = prony(x,nb,na)
2
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finds the numerator and denominator coefficients of an IIR filter whose 
impulse response approximates the sequence x.

prony implements the method described in Parks and Burrus [3] 
(pgs. 226-228). This method uses a variation of the covariance method of AR 
modeling to find the denominator coefficients a, and then finds the numerator 
coefficients b for which the resulting filter’s impulse response matches exactly 
the first nb + 1 samples of x. The filter is not necessarily stable, but it can 
potentially recover the coefficients exactly if the data sequence is truly an 
autoregressive moving average (ARMA) process of the correct order.

NOTE  The functions prony and stmcb (described next) are more accurately 
described as ARX models in system identification terminology. ARMA 
modeling assumes noise only at the inputs, while ARX assumes an external 
input. prony and stmcb know the input signal: it is an impulse for prony and 
is arbitrary for stmcb.

A model for the test sequence x (from the earlier lpc example) using a 
third-order IIR filter is

[b,a] = prony(x,3,3)

b =
     1.1165    –0.2181    –0.6084     0.5369

a =
     1.0000    –0.1619    –0.4765     0.4940
4-13
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The impz command shows how well this filter’s impulse response matches the 
original sequence:

format long
[x impz(b,a,10)]

ans =

   1.11649535105007   1.11649535105007
  –0.03731609173676  –0.03731609173676
  –0.08249198453223  –0.08249198453223
  –0.04583930972315  –0.04583930972315
  –0.14255125351637  –0.02829072973977
   0.20400424807471   0.01433198229497
   0.02685697779814   0.01148698991026
   0.18956307836948   0.02266475846451
   0.02717716288172   0.00206242734272
   0.08057060786906   0.00545783754743

Notice that the first four samples match exactly. For an example of exact 
recovery, recover the coefficients of a Butterworth filter from its impulse 
response:

[b,a] = butter(4,.2);
h = impz(b,a,26);
[bb,aa] = prony(h,4,4);

Try this example; you’ll see that bb and aa match the original filter coefficients 
to within a tolerance of 10-13.

Steiglitz-McBride Method (ARMA Modeling)
stmcb determines the coefficients for the system b(z)/a(z) given an approximate 
impulse response x, as well as the desired number of zeros and poles. This 
function identifies an unknown system based on both input and output 
4
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sequences that describe the system’s behavior, or just the impulse response of 
the system. In its default mode, stmcb works like prony:

[b,a] = stmcb(x,3,3)

b =
    1.1165   –0.6213   –0.8365    1.3331

a =
    1.0000   –0.5401   –0.6109    1.1298

stmcb also finds systems that match given input and output sequences:

y = filter(1,[1 1],x);  % Create an output signal.
[b,a] = stmcb(y,x,0,1)

b = 
     1

a =
     1     1

In this example, stmcb correctly identifies the system used to create y from x.

The Steiglitz-McBride method is a fast iterative algorithm that solves for the 
numerator and denominator coefficients simultaneously in an attempt to 
minimize the signal error between the filter output and the given output 
signal. This algorithm usually converges rapidly, but might not converge if the 
model order is too large. As for prony, stmcb’s resulting filter is not necessarily 
stable due to its exact modeling approach.

stmcb provides control over several important algorithmic parameters; modify 
these parameters if you are having trouble modeling the data. To change the 
number of iterations from the default of five and provide an initial estimate for 
the denominator coefficients:

n = 10;            % number of iterations
a = lpc(x,3);      % initial estimates for denominator
[b,a] = stmcb(x,3,3,n,a);

The function uses an all-pole model created with prony as an initial estimate 
when you do not provide one of your own.
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To compare the functions lpc, prony, and stmcb, compute the signal error in 
each case:

a1 = lpc(x,3);
[b2,a2] = prony(x,3,3);
[b3,a3] = stmcb(x,3,3);
[ x–impz(1,a1,10)  x–impz(b2,a2,10)  x–impz(b3,a3,10) ]

ans =

    0.1165         0         0
   –0.0058         0   –0.0190
   –0.0535    0.0000    0.0818
    0.0151   –0.0000   –0.0176
   –0.1473   –0.1143   –0.0476
    0.2005    0.1897    0.0869
    0.0233    0.0154   –0.0103
    0.1901    0.1669   –0.0093
    0.0275    0.0251    0.0294
    0.0808    0.0751    0.0022

sum(ans.^2)

ans =

    0.1226    0.0834    0.0182

In comparing modeling capabilities for a given order IIR model, the last result 
shows that for this example, stmcb performs best, followed by prony, then lpc. 
This relative performance is typical of the modeling functions.

Frequency-Domain Based Modeling
The invfreqs and invfreqz functions implement the inverse operations of 
freqs and freqz; they find an analog or digital transfer function of a specified 
order that matches a given complex frequency response. Though the following 
examples demonstrate invfreqz, the discussion also applies to invfreqs. 
6
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To recover the original filter coefficients from the frequency response of a 
simple digital filter:

[b,a] = butter(4,.4)    % design Butterworth lowpass

b =
    0.0466    0.1863    0.2795    0.1863    0.0466

a =
    1.0000   –0.7821    0.6800   –0.1827    0.0301

[h,w] = freqz(b,a,64);         % compute frequency resp.
[bb,aa] = invfreqz(h,w,4,4)    % model: nb = 4, na = 4

bb =

    0.0466    0.1863    0.2795    0.1863    0.0466

aa =

    1.0000   –0.7821    0.6800   –0.1827    0.0301

The vector of frequencies w has the units in radians/second, and the frequencies 
need not be equally spaced. invfreqz finds a filter to fit the frequency data for 
any order filter; a third-order example is

[bb,aa] = invfreqz(h,w,3,3)   % find third-order IIR

bb =

    0.0464    0.1785    0.2446    0.1276

aa =

    1.0000   –0.9502    0.7382   –0.2006

Both invfreqs and invfreqz design filters with real coefficients; for a data 
point at positive frequency f, the functions fit the frequency response at both f 
and –f.
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By default invfreqz uses an equation error method to identify the best model 
from the data. This finds b and a in

by creating a system of linear equations and solving them with MATLAB’s \ 
operator. Here A(w(k)) and B(w(k)) are the Fourier transforms of the 
polynomials a and b respectively at the frequency w(k), and n is the number of 
frequency points (the length of h and w). wt(k) weights the error relative to the 
error at different frequencies. The syntax

invfreqz(h,w,nb,na,wt)

includes a weighting vector. In this mode, the filter resulting from invfreqz is 
not guaranteed to be stable.

invfreqz provides a superior (“output-error”) algorithm that solves the direct 
problem of minimizing the weighted sum of the squared error between the 
actual frequency response points and the desired response:

To use this algorithm, specify a parameter for the iteration count after the 
weight vector parameter:

wt = ones(size(w));    % create unity weighting vector
[bbb,aaa] = invfreqz(h,w,3,3,wt,30)  % 30 iterations

bbb =

    0.0464    0.1829    0.2572    0.1549

aaa =

    1.0000   –0.8664    0.6630   –0.1614

min ( ) ( ) ( ( )) ( ( ))
,b a

k

n

wt k h k A w k B w k−

=
∑ 2

1

min ( ) ( )
( ( ))
( ( )),b a

k

n

wt k h k
B w k

A w k
−

=
∑

2

1
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Parametric Modeling
The resulting filter is always stable. Graphically compare the results of the 
first and second algorithms to the original Butterworth filter:

To verify the superiority of the fit numerically:

sum(abs(h–freqz(bb,aa,w)).^2)   % total error, algorithm 1

ans =

    0.0200

sum(abs(h–freqz(bbb,aaa,w)).^2) % total error, algorithm 2

ans =

    0.0096
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Resampling
The toolbox provides a number of functions that resample a signal at a higher 
or lower rate:

The resample function changes the sampling rate for a sequence to any rate 
that is a ratio of two integers. The basic syntax for resample is

y = resample(x,p,q)

where the function resamples the sequence x at p/q times the original 
sampling rate. The length of the result y is p/q times the length of x.

One resampling application is the conversion of digitized audio signals from 
one sampling rate to another, such as from 48 kHz (the Digital Audio Tape 
standard) to 44.1 kHz (the Compact Disc standard). In the next example, the 
sampling rates are different but the idea is the same. 

Operation Function

Resample at new rate resample

Decimation decimate

Interpolation interp

Apply FIR filter with resampling upfirdn

Cubic spline interpolation spline

Other 1-D interpolation interp1
0



Resampling
The example file contains a length 4001 vector of speech sampled at 7418 Hz:

clear
load mtlb
whos

Name Size Bytes Class

  Fs    1x1  8 double array
  mtlb 4001x1 32008 double array

Grand total is 4002 elements using 32016 bytes

Fs

Fs =
        7418

To play this speech signal on a workstation that can only play sound at 8192 
Hz, use the rat function to find integers p and q that yield the correct 
resampling factor:

[p,q] = rat(8192/Fs,.0001) 

p =
   127

q =
   115

Since p/q*Fs = 8192.05 Hz, the tolerance of 0.0001 is acceptable; to resample 
the signal at very close to 8192 Hz:

y = resample(mtlb,p,q);

resample applies a lowpass filter to the input sequence to prevent aliasing 
during resampling. It designs this filter using the fir1 function with a Kaiser 
window. The syntax 

resample(x,p,q,l,beta)

controls the filter’s length and the beta parameter of the Kaiser window. 
Alternatively, use the function intfilt to design an interpolation filter b and 
use it with 

resample(x,p,q,b)
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The decimate and interp functions do the same thing as resample with p = 1 
and q = 1, respectively. These functions provide different anti-alias filtering 
options, and they incur a slight signal delay due to filtering. The interp 
function is significantly less efficient than the resample function with q = 1.

The toolbox also contains a function, upfirdn, that applies an FIR filter to an 
input sequence and outputs the filtered sequence at a different sample rate 
than its original rate. See “Multirate Filter Bank Implementation” on page 
1-19 and the reference description of upfirdn in Chapter 6 for more details.

The standard MATLAB environment contains a function, spline, that works 
with irregularly spaced data. The MATLAB function interp1 performs 
interpolation, or table lookup, using various methods including linear and 
cubic interpolation. See the online MATLAB Function Reference for 
information on spline and interp1.
2
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Cepstrum Analysis
Cepstrum analysis is a nonlinear signal processing technique with a variety of 
applications in areas such as speech and image processing. The Signal 
Processing Toolbox provides three functions for cepstrum analysis:

The complex cepstrum for a sequence x is calculated by finding the complex 
natural logarithm of the Fourier transform of x, then the inverse Fourier 
transform of the resulting sequence:

The toolbox function cceps performs this operation, estimating the complex 
cepstrum for an input sequence. It returns a real sequence the same size as the 
input sequence,

xhat = cceps(x)

The complex cepstrum transformation is central to the theory and application 
of homomorphic systems, that is, systems that obey certain general rules of 
superposition. See Oppenheim and Schafer [2] for a discussion of the complex 
cepstrum and homomorphic transformations, with details on speech processing 
applications.

Try using cceps in an echo detection application. First, create a 45 Hz sine 
wave sampled at 100 Hz:

t = 0:0.01:1.27;
s1 = sin(2*pi*45*t);

Add an echo of the signal, with half the amplitude, 0.2 seconds after the 
beginning of the signal:

s2 = s1 + 0.5*[zeros(1,20) s1(1:108)];

Operation Function

Complex cepstrum cceps

Real cepstrum rceps

Inverse complex cepstrum icceps

ˆ logx X e e dj j n= ( )



−∫

1

2π
ωω

π

π ω 
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The complex cepstrum of this new signal is

c = cceps(s2);
plot(t,c)

Note that the complex cepstrum shows a peak at 0.2 seconds, indicating the 
echo.

The real cepstrum of a signal x, sometimes called simply the cepstrum, is 
calculated by determining the natural logarithm of magnitude of the Fourier 
transform of x, then obtaining the inverse Fourier transform of the resulting 
sequence [2]:

The toolbox function rceps performs this operation, returning the real 
cepstrum for a sequence x. The returned sequence is a real-valued vector the 
same size as the input vector:

y = rceps(x)

By definition, you cannot reconstruct the original sequence from its real 
cepstrum transformation, as the real cepstrum is based only on the magnitude 
of the Fourier transform for the sequence (see [2]). The rceps function, 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1.5

-1

-0.5

0

0.5

1

c X e e dx
j j n= ( )

−∫
1

2π
ωω

π

π
ωlog
4



Cepstrum Analysis
however, can reconstruct a minimum-phase version of the original sequence by 
applying a windowing function in the cepstral domain. To obtain both the real 
cepstrum and the minimum phase reconstruction for a sequence, use

[y,ym] = rceps(x)

where y is the real cepstrum and ym is the minimum phase reconstruction of x.

Inverse Complex Cepstrum
To invert the complex cepstrum, use the icceps function. Inversion is 
complicated by the fact that the cceps function performs a data dependent 
phase modification so that the unwrapped phase of its input is continuous at 
zero frequency. The phase modification is equivalent to an integer delay. This 
delay term is returned by cceps if you ask for a second output. For example:

x = 1:10;
[xh,nd] = cceps(x)

xh =
  Columns 1 through 7 
    2.2428   -0.0420   -0.0210    0.0045    0.0366    0.0788    0.1386
  Columns 8 through 10 
    0.2327    0.4114    0.9249

nd =
     1

To invert the complex cepstrum, use icceps with the original delay parameter:

icceps(xh,nd)

ans =
  Columns 1 through 7 
    1.0000    2.0000    3.0000    4.0000    5.0000    6.0000    7.0000
  Columns 8 through 10 
    8.0000    9.0000   10.0000

NOTE  With any modification of the complex cepstrum, the original delay term 
may no longer be valid. Use the icceps function with care.
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FFT-Based Time-Frequency Analysis
The Signal Processing Toolbox provides a function, specgram, that returns the 
time-dependent Fourier transform for a sequence, or displays this information 
as a spectrogram. The time-dependent Fourier transform is the discrete-time 
Fourier transform for a sequence, computed using a sliding window. This form 
of the Fourier transform, also known as the short-time Fourier transform 
(STFT), has numerous applications in speech, sonar, and radar processing. The 
spectrogram of a sequence is the magnitude of the time-dependent Fourier 
transform versus time.

To display the spectrogram of a linear FM signal:

Fs = 10000;
t = 0:1/Fs:2;
x = vco(sawtooth(2*pi*t,.75),[0.1 0.4]*Fs,Fs);
specgram(x,512,Fs,kaiser(256,5),220)

Note that the spectrogram display is an image, not a plot.
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Median Filtering
Median Filtering
The function medfilt1 implements one-dimensional median filtering, a 
nonlinear technique that applies a sliding window to a sequence. The median 
filter replaces the center value in the window with the median value of all the 
points within the window [4]. In computing this median, medfilt1 assumes 
zeros beyond the input points.

When the number of elements n in the window is even, medfilt1 sorts the 
numbers, then takes the average of the ((n–1)/2 & ((n–1)/2)+1) elements.

Two simple examples with fourth- and third-order median filters are

medfilt1([4 3 5 2 8 9 1],4)

ans =

    1.500 3.500 3.500 4.000 6.500 5.000 4.500

medfilt1([4 3 5 2 8 9 1],3)

ans =

     3     4     3     5     8     8     1

See the Image Processing Toolbox User’s Guide for information on 
two-dimensional median filtering.
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Communications Applications
The toolbox provides three functions for communications simulation:

Modulation varies the amplitude, phase, or frequency of a carrier signal with 
reference to a message signal. The modulate function modulates a message 
signal with a specified modulation method.

The basic syntax for the modulate function is

y = modulate(x,Fc,Fs,'method',opt)

where:

• x is the message signal.

• Fc is the carrier frequency.

• Fs is the sampling frequency.

• method is a flag for the desired modulation method.

• opt is any additional argument that the method requires. (Not all 
modulation methods require an option argument.) 

Operation Function

Modulation modulate

Demodulation demod

Voltage controlled oscillation vco
8



Communications Applications
The table below summarizes the modulation methods provided; see Chapter 6 
for complete details on each.

If the input x is an array rather than a vector, modulate modulates each 
column of the array.

To obtain the time vector that modulate uses to compute the modulated signal, 
specify a second output parameter:

[y,t] = modulate(x,Fc,Fs,'method',opt)

The demod function performs demodulation, that is, it obtains the original 
message signal from the modulated signal. 

The syntax for demod is 

x = demod(y, Fc,Fs,'method',opt)

demod uses any of the methods shown for modulate, but the syntax for 
quadrature amplitude demodulation requires two output parameters:

[X1,X2] = demod(y,Fc,Fs,'qam')

If the input y is an array, demod demodulates all columns.

Method Description

amdsb–sc or am Amplitude modulation, double side-band, suppressed 
carrier

amdsb–tc Amplitude modulation, double side-band, transmitted 
carrier

amssb Amplitude modulation, single side-band

fm Frequency modulation

pm Phase modulation

ptm Pulse time modulation

pwm Pulse width modulation

qam Quadrature amplitude modulation
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Try modulating and demodulating a signal. A 50 Hz sine wave sampled at 1000 
Hz is

t = (0:1/1000:2);
x = sin(2*pi*50*t);

With a carrier frequency of 200 Hz, the modulated and demodulated versions 
of this signal are

y = modulate(x,200,1000,'am');
z = demod(y,200,1000,'am');

To plot portions of the original, modulated, and demodulated signal:

plot(t(1:150),x(1:150))
plot(t(1:150),y(1:150))
plot(t(1:150),z(1:150))

The voltage controlled oscillator function vco creates a signal that oscillates at 
a frequency determined by the input vector. The basic syntax for vco is

y = vco(x,Fc,Fs)

where Fc is the carrier frequency and Fs is the sampling frequency. 
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Communications Applications
To scale the frequency modulation range:

y = vco(x,[Fmin Fmax],Fs)

In this case, vco scales the frequency modulation range so values of x on the 
interval [–1 1] map to oscillations of frequency on [Fmin Fmax].

If the input x is an array, vco produces an array whose columns oscillate 
according to the columns of x.

See “FFT-Based Time-Frequency Analysis” on page 4-26 for an example using 
the vco function.
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Deconvolution
Deconvolution, or polynomial division, is the inverse operation of convolution. 
Deconvolution is useful in recovering the input to a known filter, given the 
filtered output. This method is very sensitive to noise in the coefficients, 
however, so use caution in applying it.

The syntax for deconv is

[q,r] = deconv(b,a)

where b is the polynomial dividend, a is the divisor, q is the quotient, and r is 
the remainder. 

To try deconv, first convolve two simple vectors a and b (see Chapter 1 for a 
description of the convolution function):

a = [1 2 3];
b = [4 5 6];
c = conv(a,b)

c = 
4 13 28 27 18

Now use deconv to deconvolve b from c:

[q,r] = deconv(c,a)

q = 
4 5 6

r = 
0 0 0 0 0

See the System Identification Toolbox User’s Guide for advanced applications 
of signal deconvolution.
2
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Specialized Transforms
In addition to the discrete Fourier transform (DFT) described in Chapter 1, the 
Signal Processing Toolbox and the MATLAB environment together provide the 
following transform functions:

• The chirp z-transform (CZT), useful in evaluating the z-transform along 
contours other than the unit circle. The chirp z-transform is also more 
efficient than the DFT algorithm for the computation of prime-length 
transforms, and it is useful in computing a subset of the DFT for a sequence.

• The discrete cosine transform (DCT), closely related to the DFT. The DCT’s 
energy compaction properties are useful for applications such as signal 
coding.

• The Hilbert transform, which facilitates the formation of the analytic signal. 
The analytic signal is useful in the area of communications, particularly in 
bandpass signal processing.

Chirp z-Transform
The chirp z-transform, or CZT, computes the z-transform along spiral contours 
in the z-plane for an input sequence. Unlike the DFT, the CZT is not 
constrained to operate along the unit circle, but can evaluate the z-transform 
along contours described by

where A is the complex starting point, W is a complex scalar describing the 
complex ratio between points on the contour, and M is the length of the 
transform. 

z AW l Ml
l= = −− , , ...0 1
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One possible spiral is

A = 0.8*exp(j*pi/6);
W = 0.995*exp(–j*pi*.05);
M = 91;
z = A*(W.^(–(0:M–1)));
zplane([],z.')

czt(x,M,W,A) computes the z-transform of x on these points.

An interesting and useful spiral set is m evenly spaced samples around the unit 
circle, parameterized by A = 1 and W = exp(–j*pi/M). The z-transform on this 
contour is simply the DFT, obtained by

y = czt(x)

czt is faster than the fft function for computing the DFT of sequences with 
certain odd lengths, particularly long prime-length sequences. (Try comparing 
the execution time for the fft and czt functions for a sequence of length 1013.)
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Discrete Cosine Transform
The toolbox function dct computes the unitary discrete cosine transform, or 
DCT, for an input vector or matrix. Mathematically, the unitary DCT of an 
input sequence x is

where 

The DCT is closely related to the discrete Fourier transform; the DFT is 
actually one step in the computation of the DCT for a sequence. The DCT, 
however, has better energy compaction properties, with just a few of the 
transform coefficients representing the majority of the energy in the sequence. 
The energy compaction properties of the DCT make it useful in applications 
such as data communications.

The function idct computes the inverse DCT for an input sequence, 
reconstructing a signal from a complete or partial set of DCT coefficients. The 
inverse discrete cosine transform is

where
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Because of the energy compaction mentioned above, it is possible to reconstruct 
a signal from only a fraction of its DCT coefficients. For example, generate a 10 
Hz sinusoidal sequence, sampled at 1000 Hz:

t = (0:1/999:1);
x = sin(2*pi*25*t);

Compute the DCT of this sequence and reconstruct the signal using only those 
components with value greater than 53 (12 of the original 1000 DCT 
coefficients):

y = dct(x);               % compute DCT
y2 = find(abs(y) < 53);   % use 12 coefs.
y(y2) = zeros(size(y2));  % zero out points < 53
z = idct(y);              % reconstruct signal using inverse DCT

Plot the original and reconstructed sequences.

plot(t,x)
plot(t,z), axis([0 1 –1 1])

One measure of the accuracy of the reconstruction is 

norm(x–z)/norm(x)
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Specialized Transforms
that is, the norm of the difference between the original and reconstructed 
signals, divided by the norm of the original signal. In this case, the relative 
error of reconstruction is 0.1778. The reconstructed signal retains 
approximately 82% of the energy in the original signal.

Hilbert Transform
The toolbox function hilbert computes the Hilbert transform for a real input 
sequence x and returns a complex result of the same length:

y = hilbert(x)

where the real part of y is the original real data and the imaginary part is the 
actual Hilbert transform. y is sometimes called the analytic signal, in reference 
to the continuous-time analytic signal. A key property of the discrete-time 
analytic signal is that its z-transform is 0 on the lower half of the unit circle. 
Many applications of the analytic signal are related to this property; for 
example, the analytic signal is useful in avoiding aliasing effects for bandpass 
sampling operations. The magnitude of the analytic signal is the complex 
envelope of the original signal.
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The Hilbert transform is related to the actual data by a 90˚ phase shift; sines 
become cosines and vice versa. To plot a portion of data (solid line) and its 
Hilbert transform (dotted line):

t = (0:1/1023:1);
x = sin(2*pi*60*t);
y = hilbert(x);
plot(t(1:50),real(y(1:50))), hold on
plot(t(1:50),imag(y(1:50)),':'), hold off

The analytic signal is useful in calculating instantaneous attributes of a time 
series, the attributes of the series at any point in time. The instantaneous 
amplitude of the input sequence is the amplitude of the analytic signal. The 
instantaneous phase angle of the input sequence is the (unwrapped) angle of 
the analytic signal; the instantaneous frequency is the time rate of change of 
the instantaneous phase angle. You can calculate the instantaneous frequency 
using diff, as described in the online MATLAB Function Reference.
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SPTool: An Interactive Signal Processing Environment
The Signal Processing Toolbox includes an interactive graphical user interface 
(GUI), called SPTool, for performing digital signal processing tasks. SPTool 
provides an easy-to-use interface to many of the most important toolbox 
functions. With it, you can use the mouse and on-screen controls to import, 
view, and measure digital signals; design, view, and implement digital filters; 
and analyze the frequency content of signals.

This chapter describes how to use the different components of SPTool. Where 
appropriate, we point you to other areas of the manual that describe how to 
perform similar tasks by calling functions from the command line or from 
M-files.

The section “Example: Generation of Bandlimited Noise” at the end of this 
chapter describes how to use this graphical environment for a complete filter 
design and analysis task.

Overview
SPTool is a graphical environment for analyzing and manipulating digital 
signals, filters, and spectra. It is the starting point for using the interactive 
signal processing environment. In SPTool, you can import signals, filters, and 
spectra either from the workspace or as MAT-files. Through SPTool, you access 
four additional GUI tools that provide an integrated environment for signal 
browsing, filter design, analysis, and implementation. The four components of 
the interactive signal processing environment include:

• The Signal Browser, which provides a graphical view of the signal objects 
currently selected in SPTool and enables you to interactively display, 
measure, and analyze these signals

• The Filter Designer, which enables you to create and edit lowpass, highpass, 
bandpass, and bandstop FIR and IIR digital filters of various lengths and 
types using the filter design functions of the Signal Processing Toolbox

• The Filter Viewer, which enables you to view various characteristics of a 
filter that you’ve imported or designed, including its magnitude and phase 



SPTool: An Interactive Signal Processing Environment
responses, its group delay, its zero-pole plot, and its impulse and step 
responses

• The Spectrum Viewer, which enables you to interactively create, view, and 
modify spectra, and to perform graphical analysis of frequency domain data 
using a variety of common methods of spectral estimation
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Using SPTool
SPTool is the data management tool for the interactive GUI environment of the 
Signal Processing Toolbox. Using SPTool you can

• Load a saved session

• Import a signal, filter, or spectrum

• Duplicate or clear a signal, filter, or spectrum

• Change the name of a signal, filter, or spectrum

• Change the sampling frequency of a signal or filter

• Activate the Signal Browser, Filter Viewer, Filter Designer, or Spectrum 
Viewer

• Save a session

• Use the Window menu to change to any open MATLAB Figure window

Opening SPTool
Open SPTool from the MATLAB command window by typing

sptool

and pressing Enter (Return on Macintosh).

Quick Start
Once SPTool is open, you can import data from the workspace or a file. You can 
then view it in the Signal Browser or generate its default spectrum in the 
Spectrum Viewer.

To get started right away, work through the following example. Then continue 
through this chapter to learn the details of using SPTool and its component 
tools.

Or, you can skip the example, read through the rest of this section (from “Basic 
SPTool Functions” to “Using the Signal Browser: Interactive Signal Analysis”), 
and then work through the example.



Using SPTool
Example: Importing Signal Data from a MAT-File
This example uses the sample file mtlb.mat, which is in the toolbox/signal 
directory.

1 Select Import from the File menu.

The Import window is displayed:

2 Make sure that Signal is displayed in the Import As pop-up menu.

3 Click on the From Disk radio button.

You can either enter a MAT-file name or click Browse to open the file dialog 
box and select a MAT-file.

4 To get started, type the file name mtlb and press Tab or Enter (Return on 
Macintosh). Note that SPTool adds the .mat extension automatically.

The data from the file you selected is displayed in the File Contents list. In 
this example, mtlb is the signal data and Fs is the sampling frequency.

Notice that sig1 is displayed in the Name field. This is the default name of 
the imported signal.

5 Click on mtlb to select it, and then click on the arrow at the left of the Data 
field. mtlb is transferred to the Data field.
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6 Click on Fs to select it, and then click on the arrow at the left of the 
Sampling Frequency field.

Fs is transferred to the Sampling Frequency field.

7 Click OK.

The signal has been imported into SPTool with the name sig1. 

You can look at this signal in the Signal Browser by clicking on the View button 
under Signals.

You can look at the frequency content of the signal in the Spectrum Viewer by 
clicking on the Create button under Spectra and then clicking Apply in the 
Spectrum Viewer.

Basic SPTool Functions
When you first open SPTool, it contains no signals, filters, or spectra. You can 
import signals, filters, and spectra into SPTool, and you can also design filters 
using the Filter Designer and create spectra using the Spectrum Viewer. You 
can also save and export data from SPTool and customize many properties of 
the SPTool environment. The following figure shows the SPTool window and 
its File and Help menus, which are described below:
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The only button that is enabled is New Design; you can always design a new 
filter. The rest of the buttons are enabled when an appropriate object is listed 
and selected.

File Menu

Open Session. Select Open Session… from the File menu to load a saved session 
file. An SPTool session is saved in a file with an .spt extension.

Import. Select Import… from the File menu to import a signal, filter, or 
spectrum into SPTool from either the workspace or from a file. You can import 
variables from any MAT-file into SPTool. See “Importing Signals, Filters, and 
Spectra” on page 5-8 and “Example: Importing Signal Data from a MAT-File” 
on page 5-5 for more information.

Export. Select Export… from the File menu to export signals, filters, and 
spectra to the MATLAB workspace as structure variables. See “Saving Signal 
Data” on page 5-53, “Saving Filter Data” on page 5-69, and “Saving Spectrum 
Data” on page 5-98 for complete information.

Save Session. Select Save Session and Save Session As… from the File menu 
to save the current session. Save Session overwrites the existing session file. 
Save Session As… saves the current session with a name you specify. An 
SPTool session is saved in a MAT-file with an .spt extension.

Preferences. Select Preferences… from the File menu to customize preferences 
for the behavior of all the Signal Processing GUI tools. See “Customizing 
Preferences” on page 5-21 for a complete discussion.

Close. Select Close from the File menu to close SPTool and all other active 
Signal Processing GUI tools. SPTool prompts you to save if you have not 
recently saved the current session.

When you close SPTool, all signal and filter customization and ruler 
information set in any of the GUI tools are lost. Settings you changed and saved 
using the Preferences… window in SPTool are saved and used the next time 
you open SPTool.
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Help Menu

Overview… Select Overview… from the File menu to get general help on 
SPTool and the Signal Processing Toolbox GUI environment. This also gives 
you access to the MATLAB Help Desk.

Context Sensitive… Select Context Sensitive… from the File menu for help on a 
specific part of SPTool. When you click on Context Sensitive…, the mouse 
pointer becomes an arrow with a question mark symbol. You can then click on 
anything in SPTool, including menu items, to find out what it is and how to use 
it.

Importing Signals, Filters, and Spectra
You can import a signal, filter, or spectrum into SPTool from either the 
workspace or from a file.

Click Import… from the File menu to open the Import window:

Load the contents of a file into the File Contents list by clicking here, and 
either typing a filename in the box and pressing Tab or Enter, or clicking 
Browse and selecting a MAT-file.

Display all MATLAB workspace variables in the 
Workspace Contents list box by clicking here.

Workspace Contents 
or File Contents list.
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Loading Variables from the MATLAB Workspace
To import variables from the MATLAB workspace, first list the workspace 
variables in the Workspace Contents list. Then select the variables to be 
imported into SPTool:

1 Click the From Workspace radio button.

The contents of the MATLAB workspace are displayed in the Workspace 
Contents list.

2 You can now import one or more variables from the Workspace Contents 
list into SPTool. See “Importing Workspace Contents and File Contents” on 
page 5-9.

Loading Variables from Disk
To import variables from a MAT-file on disk, first list the file’s variables in the 
File Contents list. Then select the variables to be imported into SPTool:

1 Click the From Disk radio button.

You can either enter a MAT-file name in the MAT-file Name field or click 
Browse to open the file listing and select a MAT-file.

2 Type the exact name of the file you want to import into the MAT-file Name 
field and press Tab or Enter (Return on Macintosh).

or

Click Browse, and then find and select the file you want to import using the 
File Search window. Click OK.

The data from the file you selected is displayed in the File Contents list.

3 You can now import one or more variables from the File Contents list into 
SPTool (see below).

Importing Workspace Contents and File Contents
Once you’ve loaded the contents of the workspace or a file into the Workspace 
Contents or File Contents list, you can select one or more variables from the 
list to import into SPTool. You can import a variable as a signal parameter, a 
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filter parameter, or a spectrum parameter. You can also import a variable 
whose value represents a sampling frequency or other design parameter.

Depending on whether you’re importing a signal, a filter, or a spectrum, you 
can customize different parameters before you import the data into SPTool. In 
each case, however, the general procedure for specifying a variable or a value 
is the same for all data types. In the following illustration, the selected variable 
is being imported as a signal. See “Importing a Signal” on page 5-12, 
“Importing a Filter” on page 5-12, and “Importing a Spectrum” on page 5-13 for 
details on customizing variables that are imported into SPTool.

1 Click on a variable name in the Workspace Contents list or the 
File Contents list to select it.

If the variable is not a saved data object from SPTool, select the appropriate 
data type (Signal, Filter, or Spectrum) from the Import As pop-up menu 
and type a name into the Name field.

If the variable is a saved data object from SPTool, its name is displayed in 
the Name field, and its type (Signal, Filter, or Spectrum) is automatically 
selected in the Import As pop-up menu.

2 Click on the arrow at the left of the Data field. The selected variable is 
transferred to the Data field.

NOTE  You can also type a variable name into the Data field directly.
0
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3 The default sampling frequency is 1. To change the sampling frequency of 
the variable you’re importing, you can either:

a Click on a variable in the Workspace Contents list or File Contents list 
whose value is a sampling frequency, and then click on the arrow at the 
left of the Sampling Frequency field.

The selected variable is transferred to the Sampling Frequency field.

or

b Type a value or variable name in the Sampling Frequency field.

4 Click OK.

The signal is imported into SPTool with the specified name and sampling 
frequency.

5 To import another variable, select Import… again, click the From 
Workspace or From File radio button, and repeat steps 1 through 4 for each 
variable that you want to load into SPTool.

NOTE  When you’re importing from the workspace, you can specify either a 
variable or a value for each data field. When you’re importing from a disk, you 
can only specify variables.
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Importing a Signal. When you import a signal, you specify

• A variable name for the signal data (or the signal data values) in the Data 
field

• A variable or a value for the signal’s sampling frequency in the Sampling 
Frequency field

Importing a Filter. When you import a filter, first select the appropriate filter 
form from the Form pop-up menu:
2
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Each filter form requires different variables.

• For Transfer Function you specify:

- A variable name or a value for the numerator in the Numerator field

- A variable name or a value for the denominator in the Denominator field

• For State-Space you specify:

A variable name or a value for each matrix in the A-Matrix, B-Matrix, 
C-Matrix, and D-Matrix fields

• For Zeros, Poles, Gain you specify:

- A variable name or a value for the zeros in the Zeros field

- A variable name or a value for the poles in the Poles field

- A variable name or a value for the gain in the Gain field

• For Second-Order Sections you specify:

A variable name or a value for the SOS matrix in the SOS Matrix field

• For every filter, you specify:

A variable name or a value for the filter’s sampling frequency in the 
Sampling Frequency field

Importing a Spectrum. When you import a spectrum, you specify:

• A variable name or a value for the power spectral density (PSD) of the signal 
in the PSD field

• A variable name or a value for the frequency vector in the Freq. Vector field
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Working with Signals, Filters, and Spectra
When a signal, filter, or spectrum is imported into SPTool or created in SPTool, 
it is displayed in the appropriate list box, as shown below. Using the Edit menu 
functions and SPTool buttons, you can edit various properties of the data in 
SPTool and invoke all of SPTool’s digital signal processing functions.

Spectrum View buttonSignal View button

Filter View button

Signals list

Filters list

Spectra list
4
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Component Lists in SPTool
Each signal, filter, and spectrum in SPTool is displayed in the appropriate 
Signals list, Filters list, or Spectra list.

• Signals are displayed with the signal type [vector] or [array]:

- A vector signal ([vector]) has one column of data.

- An array signal ([array]) has more than one column of data.

• Filters are displayed with the filter type [design] or [imported]:

- A designed filter ([design]) is a filter that was created using the Filter 
Designer. This type of filter can also be edited in the Filter Designer.

- An imported filter ([imported]) is a filter that was imported from the 
MATLAB workspace or a file. It can be applied to a signal in SPTool, but 
it cannot be edited in the Filter Designer.

• Spectra are displayed with the spectrum type [auto]:

An auto-spectrum ([auto]) is a spectrum whose source is a single signal, as 
opposed to the cross-spectrum of two channels of data. spectrum[auto] is the 
only spectrum type in SPTool.

Selecting Data Objects in SPTool
Each signal, filter, and spectrum in SPTool is one data object. A data object is 
selected when it is highlighted. When you first import or create a data object, 
it is selected.

The Signals list shows all vector and array signals in the current SPTool 
session.

The Filters list shows all designed and imported filters in the current SPTool 
session. 

The Spectra list shows all spectra in the current SPTool session. 
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You can select a single data object in a list, a range of data objects in a list, or 
multiple separate data objects in a list. You may also have data objects 
simultaneously selected in different lists.

• To select a single unselected data object, click on it. All other data objects in 
that list box become unselected.

• To add or remove a range of data objects, Shift-click on the data objects at 
the top and bottom of the section of the list that you want to add.

• To add a single data object to a selection or remove a single data object from 
a multiple selection, Ctrl-click (PC and UNIX) or Command-click 
(Macintosh) on the object. Instead of Ctrl-click, you can use the right mouse 
button.

Editing Data Objects in SPTool
The Edit menu entries are only available when there is at least one selected 
data object (signal, filter, or spectrum) in SPTool. Use the Edit menu to 
duplicate and clear objects in SPTool, and to edit object names and change 
sampling frequencies.

A signal, filter, or spectrum must be selected in order to be edited. When you 
click on an Edit menu entry, all selected data objects are displayed in a pop-up 
menu. 

To edit an SPTool object:

1 Select a signal, filter, or spectrum.

2 Click the appropriate Edit menu function.

The pop-up menu shows the names of all selected data objects.

3 Drag to choose a specific signal, filter, or spectrum for editing.

Duplicate. Use Duplicate from the Edit menu to make a copy of the selected 
signal, filter, or spectrum in SPTool.

Click Duplicate and drag to choose the signal, filter, or spectrum you want to 
copy. When you select a data object to duplicate it, a new data object of the 
same type is automatically created. The new data object is named as a copy of 
the selected data object. It is placed at the bottom of the list and is selected. You 
can change its name using Name… from the Edit menu.
6
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Clear. Use Clear from the Edit menu to delete the selected signal, filter, or 
spectrum from SPTool.

Click Clear and drag to choose the signal, filter, or spectrum you want to 
remove. The data object is deleted from the current SPTool session.

Name. Use Name… from the Edit menu to give the selected signal, filter, or 
spectrum a new, unique name.

1 Click Name... and drag to choose the signal, filter, or spectrum you want to 
rename.

The Name Change dialog box is displayed.

2 Type in the new name and click OK.

Sampling Frequency. Use Sampling Frequency… from the Edit menu to supply 
a sampling frequency for a selected signal or filter. The sampling frequency 
may be a number – such as 1, 0.001, 1/5000, or a valid MATLAB expression 
including workspace variables – such as Fs, 1/Ts, or cos(.1*pi).

1 Click Sampling Frequency... and drag to choose the signal or filter you 
want to change.

The Sampling Frequency... dialog box is displayed.

2 Type in the value, variable name, or expression and click OK.

Viewing a Signal
Use the Signal View button to make the Signal Browser active and view one or 
more imported signals. The Signal Browser provides tools for graphical 
analysis of the selected signal(s).

Select one or more signals from the Signals list and click the View button in 
the signal panel. The Signal Browser displays the selected signal(s). See “Using 
the Signal Browser: Interactive Signal Analysis” on page 5-42 for a full 
description of Signal Browser functions and operations.

Viewing a Filter
Use the View button in the Filters panel to make the Filter Viewer active and 
view imported filters or filters designed/edited in the Filter Designer. The 
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Filter Viewer provides tools for analyzing filters; you can investigate the 
magnitude response, phase, group delay, zeros and poles, and impulse and step 
responses of the selected filters.

Select one or more filters from the Filters list and click the View button in the 
filter panel. The Filter Viewer displays the selected filters. See “Using the 
Filter Viewer: Interactive Filter Analysis” on page 5-74 for a full description of 
Filter Viewer functions and operations.

Designing a Filter

New Design. Use the Filter New Design button to make the Filter Designer 
active and design a filter. The Filter Designer lets you create FIR and IIR 
digital filters of various lengths and types using the filter design functions in 
the Signal Processing Toolbox.

Click the New Design button in the Filter panel. The Filter Designer displays 
a filter created with the default settings and assigns it a default name of filtn, 
where n is a unique sequential identifying digit. Once the default filter is 
created, you can use it as is or edit it with the Filter Designer. You can rename 
it using Name… from the Edit menu.

Edit Design. Use the Filter panel’s Edit Design button to make the Filter 
Designer active and edit a filter. You can only edit filters whose filter type is 
[design]—that is, filters created in SPTool; you cannot edit filters imported 
into SPTool.

Select one or more filters from the Filters list and click the Edit Design button 
in the filter panel. The Filter Designer displays the first of the selected filters. 
The other selected filters can be edited, one at a time, by selecting them from 
the Filter pop-up menu. See “Using the Filter Designer: Interactive Filter 
Design” on page 5-55 for a full description of Filter Designer functions and 
operations.
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Applying a Filter
Use the Apply Filter button to apply a filter to a selected signal. This creates 
a new signal.

1 Select one signal from the Signals list and one filter from the Filters list and 
click the Apply Filter button in the filter panel.

The Apply Filter dialog box is displayed:

2 Select the filtering algorithm from the Algorithm pop-up menu, type the 
name for the new signal in the Output Signal field, and click OK.

The selected filter is applied to the selected input signal and the new output 
signal is listed in the Signals list.

Creating a Spectrum
Use the Create button to activate the Spectrum Viewer and generate a default 
spectrum of a selected signal. Once you’ve generated a spectrum, you can view 
it in a variety of ways, measure it, and modify it in the Spectrum Viewer.

1 Select one signal from the Signals list and click the Create button in the 
Spectra panel.

The Spectrum Viewer is activated and a spectrum object with default 
parameters is created in the Spectra panel. No spectrum is computed or 
displayed yet. The newly created spectrum has a default name of specn, 
where n is a unique sequential identifying digit. Once the default spectrum 

Drag to select the 
algorithm you want to 
use.

Type the new signal 
name here.
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is created, you can use it as is or edit it in the Spectrum Viewer. You can 
rename it using Name… from the Edit menu.

2 Use the default parameters in the Spectrum Viewer, or modify the 
parameters as necessary. 

3 Press Apply in the Spectrum Viewer to compute the spectrum. This button 
is enabled when the spectrum has just been created or when you have 
changed one or more parameters in the Spectrum Viewer.

The updated spectrum is displayed in the Spectrum Viewer. See “Using the 
Spectrum Viewer: Interactive PSD Analysis” on page 5-88 for a full 
description of Spectrum Viewer parameters and displays.

Viewing a Spectrum
Use the View button in the Spectrum panel to activate the Spectrum Viewer 
and display one or more selected spectra.

Select one or more spectra from the Spectra list and click View in the spectrum 
panel. The Spectrum Viewer displays the selected spectrum or spectra.

Updating a Spectrum
Use the Update button to update the selected spectrum so that it reflects the 
data in the currently selected signal.

1 Select one signal from the Signals list and one spectrum from the Spectra 
list and click Update in the Spectra panel.

The spectral data from the current spectrum is removed from the Spectrum 
Viewer. The Spectrum Viewer is activated. No spectrum is displayed yet.

2 Press Apply in the Spectrum Viewer to compute the spectrum and complete 
the update. 

The spectrum is regenerated with the same parameters but using the data 
in the currently selected signal. This feature is useful when you have altered 
a signal (by filtering it, for example), and want to update the existing 
spectrum to reflect the change.
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Customizing Preferences
Use Preferences… from the File menu to customize displays and certain 
parameters for SPTool and its four component tools. The new settings are 
saved on disk and are used when you restart MATLAB.

In the preferences panels, you can:

• Select colors and markers for rulers and set the initial ruler style

• Select color and line style sequence for displayed signals

• Configure axis labels, and enable/disable rulers, panner, and mouse zoom in 
the Signal Browser

• Configure axis parameters, and enable/disable rulers and mouse zoom in the 
Spectrum Viewer

• Configure filter and axis parameters and enable/disable mouse zoom in the 
Filter Viewer

• Configure tiling preferences in the Filter Viewer

• Specify FFT length, and enable/disable mouse zoom and grid in the Filter 
Designer

• Configure plug-ins

When you first select Preferences…, the Preferences dialog box is set to 
Rulers. You can change the settings for rulers, or click on any of the other 
settings categories to customize other settings.

Click once on a settings category to select it.

The following sections describe all of the settings you can modify. The 
illustrations show the default settings for each category. For additional 
information on preference settings, use the Help... button at the bottom of the 
Preferences dialog box.
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Ruler Settings
The Rulers preferences apply to the rulers in the Signal Browser, Spectrum 
Viewer, and Filter Viewer.

Ruler Color. Specifies the color of the rulers. Color is specified as a string 
(e.g., 'r') or RGB triple (e.g., [1 0 0]).

Type in a new value to change the ruler color.

Ruler Marker. Specifies the marker used in the track and slope rulers.

Click in the pop-up menu and drag to select a different marker.

Marker Size. Specifies the size of the ruler marker in points. This can be any 
positive value.

Type in a new value to change the marker size.

Initial Type. Specifies the type of ruler (horizontal, vertical, track, or slope) that 
is selected when you first open the Signal Browser, Spectrum Viewer, or Filter 
Viewer.

Click in the pop-up menu and drag to select a different ruler type.
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Color Settings
The Colors preferences apply to signals displayed in the Signal Browser, 
Spectrum Viewer, and Filter Viewer.

Color Order. Specifies the color order to cycle through for data plotted in the 
Signal Browser, Spectrum Viewer, and Filter Viewer. The default is the axis 
color order.

Type in a new value or value string to change the color order. Color is specified 
as a string (e.g., 'r') or RGB triple (e.g., [1 0 0]), an n-by-3 matrix of n colors, 
or an n-by-1 cell array of such objects.

Line Style Order. Specifies the line styles to cycle through for data plotted in the 
Signal Browser, Spectrum Viewer, and Filter Viewer. The default is the axis 
line style order.

Type in a new string value (e.g., '--') or an array of strings 
(e.g., {'-','--',':'}) to change the line style order.
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Signal Browser Settings
The Signal Browser preferences let you set optional x-axis and y-axis labels, 
enable and disable the display of the rulers and the panner, and toggle zoom 
persistence.

X Label, Y Label. Type in a string for the x-axis label and the y-axis label in the 
Signal Browser. The default is Time for the x-axis.

Rulers. Click in the check box to display (checked) or hide (unchecked) the ruler 
buttons and the ruler panel in the Signal Browser. See “Ruler Controls” on 
page 5-32 for details on using the rulers in the Signal Browser.

Panner. Click in the check box to display (checked) or hide (unchecked) the 
panner in the Signal Browser. See “Panner Display” on page 5-51 for details on 
using the panner in the Signal Browser.

Stay in Zoom-mode After Zoom. Click in the check box to enable (checked) or 
disable (unchecked) zoom persistence in the Signal Browser. See “Zoom 
Controls” on page 5-30 for details on zoom controls in the Signal Browser.
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Spectrum Viewer Settings
The Spectrum Viewer preferences let you set axis parameters, enable and 
disable the display of the rulers, and toggle zoom persistence.

Magnitude Axis Scaling. Specifies the scaling units for the magnitude (y-) axis in 
the Spectrum Viewer. Scaling units can be dB or linear.

Click in the pop-up menu and drag to select a different scaling.

Frequency Axis Scaling. Specifies the scaling units for the frequency (x-) axis in 
the Spectrum Viewer. Scaling units can be linear or log.

Click in the pop-up menu and drag to select a different scaling.

Frequency Axis Range. Specifies the numerical range for the frequency (x-) axis in 
the Spectrum Viewer. Scaling options are [0,Fs/2], [0,Fs], or [-Fs/2,Fs/2].

Click in the pop-up menu and drag to select a different frequency range.

Rulers. Click in the check box to display (checked) or hide (unchecked) the ruler 
buttons and the ruler panel in the Spectrum Viewer. See “Ruler Controls” on 
page 5-32 for details on using the rulers in the Spectrum Viewer.

Stay in Zoom-mode After Zoom. Click in the check box to enable (checked) or 
disable (unchecked) zoom persistence in the Spectrum Viewer. See “Zoom 
Controls” on page 5-30 for details on zoom controls in the Spectrum Viewer.
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Filter Viewer Settings
The Filter Viewer preferences let you set key filter plot configuration 
parameters and toggle zoom persistence.

FFT Length. Specifies the number of points used for the magnitude, phase, and 
group delay plots.

Type in a new value to change the FFT length.

Time Response Length. Specifies the time response length for the impulse and step 
response plots. An empty value [ ] indicates that a response length will 
automatically be determined using the impz function.

Type in a new value to change the time response length.

Magnitude Axis Scaling. Specifies the scaling units for the magnitude (y-) axis in 
the Filter Viewer. Scaling units can be linear, log, or decibels.

Click in the pop-up menu and drag to select a different scaling.

Phase Units. Specifies the phase units for the phase response plot. Phase units 
can be degrees or radians.

Click in the pop-up menu and drag to select a different phase unit.

Frequency Axis Scaling. Specifies the scaling units for the frequency (x-) axis in 
the Filter Viewer. Scaling units can be linear or log.

Click in the pop-up menu and drag to select a different scaling.
6
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Frequency Axis Range. Specifies the numerical range for the frequency (x-) axis in 
the Filter Viewer. Scaling options are [0,Fs/2], [0,Fs], or [-Fs/2,Fs/2].

Click in the pop-up menu and drag to select a different frequency range.

Rulers. Click in the check box to display (checked) or hide (unchecked) the ruler 
buttons and the ruler panel in the Filter Viewer. See “Ruler Controls” on page 
5-32 for details on using the rulers in the Filter Viewer.

Stay in Zoom-mode After Zoom. Click in the check box to enable (checked) or 
disable (unchecked) zoom persistence in the Filter Viewer. See “Zoom Controls” 
on page 5-30 for details on zoom controls in the Filter Viewer.

Filter Viewer Tiling Settings
The Filter Viewer–Tiling preferences let you change the way the Filter Viewer 
displays the analysis plots.

Click the radio button to select how the plots are tiled in the display area. 
Options are 2-by-3 Grid, 3-by-2 Grid, Vertical (6-by-1 Grid), and
Horizontal (1-by-6 Grid).

This specifies how the plots are arranged when all six plot options are turned 
on. When fewer options are turned on, the plots are displayed as symmetrically 
as possible.
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Filter Designer Settings
The Filter Designer preferences let you set key filter configuration and plot 
parameters.

FFT Length. Specifies the number of points used to calculate a filter’s frequency 
response.

Type in a new value or variable name to change the FFT length.

Display grid lines. Turns plot grid lines on (checked) or off (unchecked).

Auto Design – initial value. Specifies the default setting for the Auto Design check 
box in the Filter Designer. When the Filter Designer is first launched, the Auto 
Design check box will have the same setting (checked or unchecked) as the 
Auto Design – initial value check box.

Stay in Zoom-mode After Zoom. Turns persistent zooming on and off, as described 
in “Zoom Controls” on page 5-30.
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Plug-Ins Settings
The Plug-Ins preferences let you search for plug-ins when SPTool is started up.

Search for Plug-Ins at start-up. Enables (checked) or disables (unchecked) 
searching for installed plug-ins.

A plug-in is an extension to SPTool. Plug-ins include customized add-on panels 
and new buttons in the panels in SPTool, new spectral methods in the 
Spectrum Viewer, and new SPTool preferences. You can also plug one or more 
toolboxes into SPTool.

You only need to use this setting when you have installed extensions or have 
other toolboxes plugged into SPTool.

To use SPTool with extensions, check Search for Plug-ins at start-up, close 
SPTool, and restart it.

Saving and Discarding Changes to Preferences Settings
The buttons at the bottom of the Preferences… panels let you save or discard 
any changes you have made, or return to the default settings:

Factory Settings. Restores the preferences in the current panel to their original 
settings; that is, the settings at the time the Signal Processing Toolbox was 
first installed.
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Revert Panel. Cancels changes in the current panel only. Settings in the current 
panel revert to the previous settings.

Cancel. Cancels changes in all preferences categories and closes the 
Preferences window. Settings in all panels revert to their previous state.

OK. Applies changes in all preferences panels and closes the Preferences 
window. Settings in all panels are saved in a MAT-file called sigprefs.mat.

If sigprefs.mat does not exist, either on the current MATLAB path or in the 
current directory, you are prompted for a location to save the file. The saved 
settings are used the next time you open SPTool. 

Controls for Viewing and Measuring
The GUI tools share common controls for viewing and measuring signals. 
These controls are described in this section. Not all tools use all of the viewing 
and measuring controls; specific details about the tools and procedures for 
viewing and measuring are described in the section on each tool.

Zoom Controls
The GUI tools share a common set of zoom control buttons. The Signal Browser 
and Spectrum Viewer use the same set of common zoom control buttons:

The Filter Designer has one additional viewing button, the Pass Band button: 

The Filter Viewer has a subset of the zoom control buttons:

Each button works the same way in every GUI tool where it occurs.

In normal use, you click a button once to zoom in or out of the signal display.
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Zoom In-X, Zoom Out-X, Zoom In-Y, and Zoom Out-Y. Click once to perform one zoom 
operation (in or out) on the x- or y-axis. Each zoom operation changes the axes 
limits by a factor of two on the specified axis, about the center of the displayed 
signal. You can click repeatedly on one or more buttons to continue to change 
the scale in one or both axes.

When you zoom in the x-axis (horizontal scaling), the Y limits (vertical scaling) 
of the main axes are not changed. Similarly, when you zoom in the y-axis, the 
X limits of the main axes are not changed.

Full View. Click once to restore the displayed signal to its full sample size in both 
axes.

Mouse Zoom. Click once to activate zoom mode. The cursor changes to a 
crosshair. You can either zoom in without specifying a zoom window, or you can 
use a zoom rectangle to select a specific zoom window. In either case, the x- and 
y-axis are automatically adjusted to display the selected signal.

• To zoom in without specifying a zoom window, click on the plot. The position 
of the crosshair is the center of a zoom operation that halves both the x- and 
y-axis limits.

• To use a zoom rectangle, click where you want the rectangle to begin, drag 
the mouse diagonally to where you want it to end, and release the mouse 
button.

• To get out of mouse zoom mode without zooming in or out, click on the Mouse 
Zoom button again.

Zoom Persistence. Mouse zooming can either be one-time or persistent:

• One-time zooming is activated when you click the Mouse Zoom button. It 
automatically turns itself off after you click in the display area and the zoom 
operation occurs. This is the default for all the tools.

• Persistent zooming is also activated by clicking the Mouse Zoom button. It 
does not turn off after you click in the display area and a zoom operation 
occurs; you can continue to click and zoom without resetting the Mouse 
Zoom button.

You can change whether zooming is one-time or persistent by selecting 
Preferences… from the File menu and toggling Stay in Zoom-mode After 
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Zoom in the preferences panels for the Signal Browser, the Spectrum Viewer, 
the Filter Designer, and the Filter Viewer.

When Stay in Zoom-mode After Zoom is selected, zooming is persistent. To 
turn off mouse zooming when Stay in Zoom-mode After Zoom is selected, click 
the Mouse Zoom button.

Passband Zoom (Filter Designer). Click once to zoom in on the passband of the 
response.

Both the x- and y-limits of the main axes are changed so that the passband fills 
the main axes.

There is no stopband zoom button. To zoom the stopband, use standard Mouse 
Zoom, centering the crosshair on the area of the stopband you want to view. If 
you are in passband zoom, first press Full View to return to the standard view.

Ruler Controls
The Signal Browser, Filter Viewer, and Spectrum Viewer share a common set 
of ruler controls. Use the rulers to make measurements on the signals or 
spectra in the main axes (display) area. The ruler controls give you a variety of 
ways to read and control the values of the rulers in the main axes. With the 
rulers you can measure such information as the vertical and horizontal 
distance between features in a signal or spectrum, the dimensions of peaks and 
valleys, and point and slope information.

In the following discussion, the Signal Browser is shown. The ruler controls 
include the Selection controls at the top right of the window and the buttons 
and edit boxes in the Rulers panel. The controls in the Filter Viewer and 
Spectrum Viewer work the same way. In the Filter Viewer, the rulers only 
appear on one subplot at a time. You can choose which subplot the rulers 
appear on by selecting the subplot from the pop-up menu at the top of the 
Rulers panel. If a subplot is not currently visible when you select its name from 
the pop-up menu, the Filter Viewer creates the subplot and places the rulers in 
it.
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Selecting a line to measure. When there is only one signal displayed, the displayed 
signal is automatically selected and is measured when you use the rulers. 
When there is more than one signal displayed, only one signal (line) may be 
selected and measured at a time.

When a signal (line) is selected, you can use the ruler controls (Vertical, 
Horizontal, Track, or Slope) and the Peaks and/or Valleys controls on the 
selected line. The label of the selected signal (line) is displayed in the Selection 
pop-up menu.

There are two ways to select a signal (line):

• Click on the Selection pop-up menu and drag to select the line to measure.

All signals that are currently selected in SPTool are listed. Vector signals in 
the Signal Browser, spectra in the Spectrum Viewer, and filters in the Filter 
Viewer are listed as single variables; in the Signal Browser, each column of 
a two-dimensional signal matrix is listed as a separate variable.

• Move the mouse pointer over any point in the line you want to select and click 
on it.

Find ruler buttons

Ruler control buttons

Selection pop-up menu Selection display

Color… button

Rulers panel

Display peaks and valleys 
buttons
Save Rulers… button

Edit boxes 
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The label of the signal, including the column number if the line is one column 
of a matrix, is displayed in the Selection pop-up menu.

The line selection display changes to the color and pattern of the selected 
signal, spectrum, or filter.

Line Selection Pop-Up Menu. Use to select a line (vector signal, array column, 
filter, or spectrum) to measure.

Click the Selection pop-up menu and drag to select the line.

Line Selection Display. The line color and style of the selected signal are displayed.

Color… Button. Use to edit the line style or display color of the selected line. 

Click on the Color… button at the top right of the window to display the 
Edit Line pop-up menu, which is shown on the left. The label of the selected 
line is displayed in the Label field.

• Click the Line Style pop-up menu and drag to select a line style, as shown 
on the left.

• Click a radio button to select a color. If you select Other, you can type a color 
value in the Enter colorspec box; the color value can be a string (e.g., 'r') 
or an RGB triple (e.g., [1 0 0]). 

• Click OK to apply the line style and color you selected.

Find Ruler Buttons. Use the find ruler buttons to bring one or both rulers into the 
viewing area of the main axes. When both rulers are within the signal display 
(main axes) area, the find ruler buttons, at the top right of the main axes area, 
are not displayed.

If the rulers are not within the signal display area, both Find Ruler 
buttons are displayed, as shown on the right:

If one ruler is within the signal display area, the button for the other 
ruler is displayed, as shown on the right:

Click a Find Ruler button to bring the specified ruler into the display area.

When a ruler is visible, you can click on it and drag it to make a measurement 
on the selected signal. See “Making Signal Measurements” on page 5-37 for 
details on manipulating the rulers and measuring the selected signal.
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Ruler Control Buttons. Use the ruler control buttons to select the type of 
measurement you want to make: Vertical, Horizontal, Track, or Slope. The 
default setting is Track.

Click a ruler control button to select it. The Rulers panel changes depending 
on which ruler control is selected. See “Making Signal Measurements” on page 
5-37 for details on the four kinds of measurements you can make and the 
parameters for each one.

Rulers Panel and Edit Boxes. The Rulers panel changes depending on which ruler 
control is selected: Vertical, Horizontal, Track, or Slope. It shows the 
parameters for the selected ruler control. Depending on which ruler control is 
selected, the following fields are displayed: x1, y1, x2, y2, dx, dy, m. The 
picture on the left shows the Rulers panel when Slope is selected.

When you click on a ruler control button, rulers are displayed superimposed on 
the signal(s) in the main axes display area. The rulers are either vertical (for 
Vertical, Track, and Slope) or horizontal (for Horizontal). For Track and 
Slope, ruler markers are also displayed. The rulers and ruler markers are 
associated with the currently selected signal. The following picture shows the 
rulers and ruler markers that are displayed when Slope is selected.

To position a ruler, you can click and drag on it. When you drag a ruler, the 
parameters in the Rulers panel change to reflect the measurements on the 
selected signal.
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You can also position a ruler by specifying parameters in the edit boxes in the 
Rulers panel. The parameters are either the x1 and x2 values or the y1 and y2 
values, depending on which ruler control is selected.

Type the value or variable for the ruler parameter in the x1 and x2 boxes or the 
y1 and y2 boxes. See “Making Signal Measurements” on page 5-37 for details 
on manipulating the rulers and the parameters you can measure with each 
one.

Peaks and Valleys. Use these buttons to show or hide the local maxima and/or 
local minima of the currently selected signal, filter response, or spectrum. Only 
peaks or valleys, or both peaks and valleys may be displayed.

• Click Peaks to toggle showing (down) or hiding (up) the maxima of the 
signal.

• Click Valleys to toggle showing (down) or hiding (up) the minima of the 
signal.

In track and slope mode (see “Making Signal Measurements” on page 5-37), the 
rulers are constrained to the peaks or valleys. In horizontal and vertical mode, 
the peaks and valleys are only visual and do not affect the behavior of the 
rulers.

Save Rulers… Button. Once you’ve set up and made a certain set of 
measurements, you may find it useful to save them for future reference. Use 
the Save Rulers… button to save a structure in the MATLAB workspace with 
the fields x1, y1, x2, y2, dx, dy, m, peaks, and valleys. Undefined values are set 
to NaN.

1 Click Save Rulers… to save the current measurements as a variable in the 
workspace.

The Save Rulers dialog box is displayed.

2 Type a variable name in the edit field and click OK.
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Making Signal Measurements
Use the rulers to make measurements on a selected line, which is a vector or a 
column of a matrix in the Signal Browser, a filter response in the Filter Viewer, 
or a spectrum in the Spectrum Viewer. To make a measurement:

1 Select a line as described in “Selecting a line to measure” on page 5-33.

2 Apply a ruler to the display as described in “Ruler Control Buttons” on page 
5-35.

3 Position a ruler where you want it in the main axes area by clicking and 
dragging it:

a Move the mouse over the ruler (1 or 2) that you want to drag.

The hand cursor is displayed when you’re over a ruler, with the ruler 
number inside it: 

b Click and drag the ruler to where you want it on the signal.

Depending on which ruler control is selected, you can drag the ruler to the 
right and left (Vertical, Track, and Slope) or up and down (Horizontal).

As you drag a ruler, the Rulers panel shows the current position of both 
rulers. Depending on which ruler control is selected, the following fields are 
displayed: x1, y1, x2, y2, dx, dy, m.

You can also position a ruler by typing its x1 and x2 or y1 and y2 values in the 
Rulers panel, as described on page 5-35.

Ruler Controls: Vertical. There are two vertical rulers, called ruler 1 and ruler 2. 
When vertical rulers are in use, the measurements displayed in the Rulers 
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panel are x1 (the position of ruler 1 on the x-axis), x2 (the position of ruler 2 on 
the x-axis), and dx (the value of x2-x1).

Click Vertical to put the rulers in vertical mode.

In vertical mode, you may change the x-values of the rulers (that is, their 
horizontal position). As the x1 and x2 values change, the value of dx changes 
automatically.

Change the x1 and x2 values by either:

• Dragging the rulers to the left and the right with the mouse

or

• Entering their values in the x1 and x2 edit boxes in the Rulers panel

Ruler Controls: Horizontal. There are two horizontal rulers, called ruler 1 and 
ruler 2. When horizontal rulers are in use, the measurements displayed in the 
8
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Rulers panel are y1 (the position of ruler 1 on the y-axis), y2 (the position of 
ruler 2 on the y-axis), and dy (the value of y2-y1).

Click Horizontal to put the rulers in horizontal mode.

In horizontal mode, you may change the y-values of the rulers (that is, their 
vertical position). As the y1 and y2 values change, the value of dy changes 
automatically.

Change the y1 and y2 values by either:

• Dragging the rulers up and down with the mouse

or

• Entering their values in the y1 and y2 edit boxes in the Rulers panel

Ruler Controls: Track. There are two vertical rulers, called ruler 1 and ruler 2, 
with a marker on each that shows the y-values of the signal at the x-values of 
the rulers. When track rulers are in use, the measurements displayed in the 
Rulers panel are x1 (the position of ruler 1 on the x-axis), y1 (the position of 
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ruler 1 on the y-axis), x2 (the position of ruler 2 on the x-axis), y2 (the position 
of ruler 2 on the y-axis), dx (the value of x2-x1), and dy (the value of y2-y1).

Click Track to put the rulers in track mode.

You can change the track marker in the Rulers preferences panel; see “Ruler 
Settings” on page 5-22.

In track mode, you may change the x-values of the rulers (that is, their 
horizontal position). As the x1 and x2 values change, the values of y1, y2, dx, 
and dy change automatically.

Change the x1 and x2 values by either:

• Dragging the rulers to the left and the right with the mouse

or

• Entering their values in the x1 and x2 edit boxes in the Rulers panel

Ruler Controls: Slope. There are two vertical rulers, called ruler 1 and ruler 2, 
with the slope line passing through the y-axis intersections of the two vertical 
rulers and the signal. The rulers also track the signal with markers on each 
ruler that shows the y-values of the signal at the x-values of the rulers. The line 
connecting (x1, y1) and (x2, y2) is included in the main plot, so you can 
approximate derivatives and slopes of the signal.

When slope rulers are in use, the measurements displayed in the Rulers panel 
are x1 (the position of ruler 1 on the x-axis), y1 (the position of ruler 1 on the 
y-axis), x2 (the position of ruler 2 on the x-axis), y2 (the position of ruler 2 on 
0
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the y-axis), dx (the value of x2 - x1), dy (the value of y2 - y1), and m (equal to 
dy/dx, the slope of the line between x1 and x2).

Click Slope to put the rulers in slope mode.

In slope mode, you may change the x-values of the rulers (that is, their 
horizontal position). As the x1 and x2 values change, the values of dy and m 
change automatically.

Change the x1 and x2 values by either:

• Dragging the rulers to the left and the right with the mouse

or

• Entering their values in the x1 and x2 edit boxes in the Rulers panel
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Using the Signal Browser: Interactive Signal Analysis
The Signal Browser tool is an interactive signal exploration environment. It 
provides a graphical view of the signal object(s) currently selected in the 
Signals column of SPTool. 

Using the Signal Browser you can:

• View and compare vector or array signals

• Zoom in on a range of signal data to examine it more closely

• Measure a variety of characteristics of signal data

• Play signal data on audio hardware

Opening the Signal Browser
To open or activate the Signal Browser from SPTool:

1 Click on one or more signals in the Signals list of SPTool.

2 Press View in the Signals panel of SPTool.

The Signal Browser is activated and the selected signal(s) are loaded into 
the Signal Browser and displayed.

Basic Signal Browser Functions
The Signal Browser has the following components:

• A main axes (display) area for viewing signals graphically

• Display management controls: Array Signals… and the complex signal 
display pop-up menu

• Zoom controls for getting a closer look at signal features

• Rulers and line display controls for making signal measurements and 
comparisons

• A panner for seeing what part of the signal is currently being displayed, and 
quickly moving the view to other features of the signal

• A menu option for playing a selected signal through audio equipment
2
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Menus

File Menu. Use Close from the File menu to close the Signal Browser. All signal 
selection and ruler information will be lost. Settings you changed and saved 
using the Preferences… window in SPTool are saved and used the next time 
you open a Signal Browser.

Options Menu. Use Play from the Options menu to play the selected signal.

Play only works when you have sound capabilities on your computer. If your 
computer does not have sound capabilities, this menu choice does nothing.

The entire selected signal is played at either Fs (the sampling frequency of the 
signal) or at the default platform sampling frequency if Fs is less than 25 Hz. 
The real part and the imaginary part of a complex signal are played in separate 
channels.

Window Menu. Use the window menu to select a currently open MATLAB 
Figure window.

Viewing (zoom) controls Measuring (line and ruler) controls

Panner

Main axes 
(display) area

Display management controls
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Zoom Controls
The available zoom controls in the Signal Browser are Mouse Zoom, Full 
View, Zoom In-Y, Zoom Out-Y, Zoom In-X, and Zoom Out-X. See “Zoom 
Controls” on page 5-30 for details on using the zoom controls in the Signal 
Browser.

Zoom persistence is off by default in the Signal Browser; use the Signal 
Browser settings panel in Preferences… to toggle zoom persistence on and off. 
See “Signal Browser Settings” on page 5-24.

Ruler and Line Display Controls
Using the rulers and line display controls, you can measure a variety of 
characteristics of signals in the Signal Browser. See “Ruler Controls” on page 
5-32 for details on using rulers and modifying line displays in the Signal 
Browser.

The rulers are displayed by default in the Signal Browser; you can turn off the 
ruler display in the Signal Browser settings panel in the Preferences dialog 
box. See “Signal Browser Settings” on page 5-24.

Help Button
To use context-sensitive help, click on the Help button. The mouse pointer 
becomes an arrow with a question mark symbol. You can then click on anything 
in the Signal Browser, including menu items, to find out what it is and how to 
use it.

Display Management Controls

Array Signals… Button. Use this to enter a column index vector for a selected 
array signal. All array signals start out with only the first column displayed.
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The Array Signals… button is enabled when at least one array signal is 
selected in SPTool.

1 Click on Array Signals…

The Column Selection for Array Signals dialog box is displayed:

All array signals that are selected in SPTool are shown in the list.

2 Select a signal from the list.

3 Type a column index vector for the selected signal.

Valid index vectors are of the form 1 or 1:3 or [1 3 5].

Complex Signal Display. Use to specify whether the Signal Browser plots the real 
part, the imaginary part, the magnitude, or the angle of a complex signal.

This menu is enabled when at least one of the signal variables selected in 
SPTool is complex. The Complex Display mode affects all of the variables in the 
current selection, even those that are strictly real.

Click and drag to select the plotting mode.

Main Axes Display Area
The Signals list in SPTool shows all signals in the current SPTool session. One 
or more signals may be selected. The signal data of all selected signals are 
displayed graphically in the main axes display area of the Signal Browser.

When there is only one signal displayed, its properties are reflected in the 
display management controls and its measurements are displayed in the ruler 
display panel. When more than one signal is displayed, select the line you want 
to focus on.
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When a signal is selected, you can use the ruler controls on the selected line 
(see “Making Signal Measurements” on page 5-37), you can choose how to 
display the signal (see “Display Management Controls” on page 5-44), and you 
can play the signal (see “Options Menu” on page 5-43). The label of the selected 
signal (line) is displayed in the Selection pop-up menu.

There are three ways to select a signal (line) in the Signal Browser:

• Click on the Selection pop-up menu and drag to select the line to measure.

or

• Move the mouse pointer over any point in the line in the main axes display 
and click on it.

or

• Move the mouse pointer over any point in the line in the panner and click on 
it.

See “Selecting a line to measure” on page 5-33 for details.

Axes Labels. By default, the x-axis in the Signal Browser is labeled Time. You 
can change the x-axis label and add a y-axis label using the Signal Browser 
settings panel in Preferences…. See “Signal Browser Settings” on page 5-24.

Click-and-Drag Panning. You can use the mouse to pan around the main axes 
display: 

Click on a line in the main axes, hold down the mouse button, and drag the 
mouse.

Click-and-drag panning is not enabled in mouse zoom mode.

Panner
The panner gives a panoramic view of the signal(s) displayed in the main axes. 
The panner always displays the entire signal sample. When you zoom in on the 
main axes, a patch in the panner shows the section of the plot that is currently 
in view in the main axes. Click-and-drag the patch in the panner window to pan 
dynamically across the signal data in the main axes.

You can also select a line by clicking on it in the panner; the selected line is 
highlighted in both the panner and in the main axes display area.

See “Panner Display” on page 5-51 for more details.
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The panner is displayed by default in the Signal Browser; you can turn off the 
panner in the Signal Browser settings panel in Preferences…. See “Signal 
Browser Settings” on page 5-24.

Making Signal Measurements
Use the rulers to make a variety of measurements on the selected signal. See 
“Making Signal Measurements” on page 5-37 for details.

Viewing and Exploring Signals
You can open or activate the Signal Browser in SPTool by selecting one or more 
signals and pressing View in the Signal panel. The selected signals are loaded 
into the Signal Browser. See “Viewing a Signal” on page 5-17 for details.

Selecting and Displaying a Signal
When the Signal Browser is activated, all selected signals are displayed in the 
main axes display area and in the panner. The elements of the selected signals 
are plotted versus an equally spaced time vector in both the main axes display 
and the panner:
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When the variable is a vector, one signal is displayed, as in the example above. 
It is automatically selected and its name, size, type, and sampling frequency 
are displayed above the main axes display; the name is also highlighted in the 
Selection pop-up menu.

When more than one signal is selected, each signal is displayed in a different 
color in both the main axes display and the panner:

The names of all signals are displayed above the main axes display. The first 
signal in the list is automatically selected in both the main axes display and 
the panner, its name is highlighted in the Selection pop-up menu, and its color 
is shown in the Selection display.
8
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When the signal is an array, only the first column is initially displayed in both 
the main axes and the panner: 

To display a different array column, or more than one column of the array, click 
the Array Signals… button and specify the column vectors to be displayed (see 
“Array Signals… Button” on page 5-44). All displayed columns of an array are 
shown in the same color; the selected column is emphasized with a heavier line 
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in both the main axes and the panner, and its label is displayed in the 
Selection pop-up menu:
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Panner Display
The panner displays the entire signal sample at all times:

When the signal in the main axes is zoomed, the part of the signal that is shown 
in the main axes is shown in the panner with a window around it:
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Each time you zoom, the panner is updated to frame the region of data 
displayed in the main axes.

Click-and-drag on the panner window to move it. As the window moves over the 
signal in the panner, the signal in the main axes area is panned.

Manipulating Displays

Changing Signal Displays. The signals are displayed in the default line colors and 
default line styles. You can change the defaults using the Color Order and 
Line Style Order fields in the Colors settings panel (see “Color Settings” on 
page 5-23).

Changing the Sample Interval. You can change the sample interval by selecting 
Sampling Frequency… from the Edit menu in SPTool. See “Editing Data 
Objects in SPTool” on page 5-16.

Displaying Complex Signals. You can change how complex numbers are displayed 
by selecting Real, Imaginary, Magnitude, or Angle from the pop-up menu. 
See “Array Signals… Button” on page 5-44.

Changing Signal Browser Displays. Using the Signal Browser settings panel in 
Preferences…, you can set optional x-axis and y-axis labels, enable and disable 
the display of the rulers and the panner, and toggle zoom persistence. See 
“Signal Browser Settings” on page 5-24.
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Working with Signals
Once a signal is displayed, you can browse it in a variety of ways:

• You can zoom in on a specific area of the display (see “Zoom Controls” on page 
5-30).

• You can mark off a segment of the display with the rulers (see “Ruler 
Controls” on page 5-32) and save ruler settings (see “Save Rulers… Button” 
on page 5-36).

• You can select a segment of the display with the panner (see “Panner 
Display” on page 5-51).

• You can make certain measurements on the displayed signals (see “Making 
Signal Measurements” on page 5-37).

• When there is more than one signal in the display, you can select which one 
you want to measure (see “Selecting a line to measure” on page 5-33).

You can use the other GUI tools to manipulate signals in a variety of ways:

• You can interactively design and analyze filters to be applied to signals (see 
“Using the Filter Designer: Interactive Filter Design” on page 5-55 and 
“Using the Filter Viewer: Interactive Filter Analysis” on page 5-74).

• You can create a spectrum for a signal and interactively analyze its spectral 
density with a variety of estimation methods (see “Using the Spectrum 
Viewer: Interactive PSD Analysis” on page 5-88).

You access the Filter Designer, Filter Viewer, and Spectrum Viewer tools from 
SPTool. You can access SPTool from the Signal Browser by:

• Clicking on an active SPTool window

or

• Activating SPTool using the Window menu in the Signal Browser

Saving Signal Data
After creating a signal in SPTool (by applying a filter to an imported signal, for 
example), you can export the signal information to the workspace or to disk 
using Export... from the File menu in SPTool. The signal information is stored 
in a structure that you can access to retrieve the signal data and sample 
frequency. The signal structure also contains a number of fields that are used 
internally by SPTool.
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To see the fields of the signal structure, try exporting a signal to the workspace:

1 Import a signal into SPTool if there are none currently loaded (see 
“Importing Signals, Filters, and Spectra” on page 5-8). Label the imported 
signal sig1.

2 Export the signal. Select Export... from the File menu.

3 In the Export dialog box, select sig1 and press the Export to Workspace 
button.

4 Type who at the MATLAB command line to look at the variables in the 
workspace. The variable called sig1 is the signal structure you exported 
from SPTool.

5 Type sig1 at the command line to list the fields of the signal structure.

The data and Fs fields of the signal structure contain the information that 
defines the signal. The other fields are used internally by SPTool, and are 
subject to change in future releases.

• The data field is a vector or array containing the signal’s data.

• The Fs field contains the sample frequency of the signal in Hertz.
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Using the Filter Designer: Interactive Filter Design
The Filter Designer provides an interactive graphical environment for the 
design of digital IIR and FIR filters based on specifications that you enter on a 
magnitude plot. Using the Filter Designer you can design IIR and FIR filters 
of various lengths and types, with standard frequency band configurations 
(highpass, lowpass, bandpass, or bandstop filters).

The Filter Designer provides access to many of the IIR filter design functions 
discussed in Chapter 2, including the butter, cheby1, cheby2, and ellip 
functions. In addition, the Filter Designer provides access to the remez, firls, 
and kaiser functions for the design of FIR filters with highpass, lowpass, 
bandpass, or bandstop configurations.

Using the Filter Designer you can:

• Design IIR filters with standard band configurations, using the Butterworth, 
Chebyshev type I, Chebyshev type II, and elliptic design options

• Design FIR filters with standard band configurations, using the equiripple, 
least squares, and Kaiser window design options

• Specify the filter’s sampling frequency and the passband and stopband edge 
frequencies

• Specify the desired amount of ripple in the filter’s passband, and attenuation 
in the stopband

• Redesign a filter by manually adjusting indicators in the magnitude plot

• Use an automatically computed filter order or set a custom filter order

• Overlay a spectrum on the filter’s magnitude response plot

When you have designed a filter to your specifications, you can apply the filter 
to a selected signal using the Apply button in SPTool (see “Applying a Filter” 
on page 5-19).

NOTE  For information on using filter design functions from the command line 
or from M-files, see Chapter 2.
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Opening the Filter Designer
You can open or activate the Filter Designer from SPTool by pressing the New 
Design or Edit Design buttons.

• To create a filter, press New Design in SPTool. A default filter is generated 
and displayed in the Filter Designer. You can view the filter in a variety of 
ways in the Filter Viewer and modify it in the Filter Designer.

• To edit a filter, select it in SPTool and press Edit Design. You can modify the 
filter in a variety of ways in the Filter Designer.

See “Designing a Filter” on page 5-18 for complete details.

Basic Filter Designer Functions
The Filter Designer has the following components:

• A pop-up menu for selecting different filter designs

• A magnitude plot (display) area for viewing filters graphically

• A Specifications panel for viewing and modifying the design parameters of 
the current filter

• A Measurements panel for viewing the characteristics of the current filter

• Specification lines for graphically adjusting the response parameters of a 
filter

• Measurement lines for measuring the response parameters of a filter

• Zoom controls for getting a closer look at the magnitude response features

The following sections describe the different components of the Filter 
Designer’s interface, and how you can use them together to create and edit 
filters.

Menus

File Menu. Use Close from the File menu to close the Filter Designer. Settings 
you changed and saved using the Preferences… window in SPTool are saved 
and used the next time you open the Filter Designer.

Window Menu. Use the Window menu to select a MATLAB Figure window.
6



Using the Filter Designer: Interactive Filter Design
Filter Pop-Up Menu
The Filter pop-up menu displays all of the filters currently selected in SPTool. 
Select a filter in the menu to make it the current filter in the Filter Designer.

Zoom Controls
The available zoom controls in the Filter Designer are Zoom In-Y, Zoom 
Out-Y, Zoom In-X, Zoom Out-X, Pass Band, Full View, and Mouse Zoom. See 
“Zoom Controls” on page 5-30 for details on using the zoom controls.

Zoom persistence is off by default in the Filter Designer; use the Filter 
Designer settings panel in the Preferences dialog to toggle zoom persistence 
on and off. See “Filter Designer Settings” on page 5-28.

Help Button
To use context-sensitive help, click on the Help button. The mouse pointer 
becomes an arrow with a question mark symbol. You can then click on any 

General controls

Viewing (zoom) controls

Specifications panel for 
setting filter parameters

Filter magnitude response display area

Measurements 
panel for viewing 
filter characteristics

Apply the specifications, 
or revert to the previous 
specifications
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object in the Filter Designer, including menu items, to find out what it is and 
how to use it.

General Controls
Beneath the zoom controls are several general controls for filter design and 
display.

Algorithm. Use the Algorithm pop-up menu to select a design for the current 
filter. When you select a design from the Algorithm pop-up menu, the 
magnitude response plot, Specifications panel, and Measurements panel all 
update to reflect the new design parameters.

Auto Design. When the Auto Design check box is checked, the filter’s magnitude 
response is redrawn whenever a filter specification is changed, either by 
entering a value in the Specifications panel or by dragging a specification line 
on the plot. When the box is not checked, the new response is computed and 
redrawn only when the Apply button is pressed or the specification line is 
released. 

Auto Design is initially off by default; use the Filter Designer settings panel 
in the Preferences dialog to change this default setting. See “Filter Designer 
Settings” on page 5-28.

Sampling Frequency. The Sampling Frequency field allows you to specify the 
filter’s sampling frequency in Hertz. To change the sampling frequency, type a 
value in the box and press Enter (Return on Macintosh). This is the same as 
changing the sampling frequency by selecting Sampling Frequency... from the 
SPTool Edit menu (see “Editing Data Objects in SPTool” on page 5-16). The 
frequency axis of the magnitude response plot is updated to reflect the new 
sampling frequency. 

Overlay Spectrum. The Filter Designer allows you to overlay a signal spectrum 
on the filter’s magnitude response plot. Press the Overlay Spectrum... button 
to display a list of the current spectra in SPTool. Select a spectrum from the list 
and press OK to overlay it on the current magnitude response plot. Note that 
the spectrum is plotted on the existing frequency axis, which is scaled to the 
filter’s sampling frequency.
8
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Filter Specifications Panel
When you design a new filter, the Filter Designer initially contains the 
specifications and magnitude response plot for an order 22, lowpass, equiripple 
filter, as shown in the panel at the left.

Use the Type pop-up menu in the Specifications panel to select a band 
configuration. Use the edit boxes below it in the panel to change the band edge 
frequencies and the amount of ripple in the passband and attenuation in the 
stopband. Check the Minimum Order box to let the Filter Designer 
automatically determine the lowest filter order that achieves the current 
specifications. 

The design parameters that are available in the Specifications panel depend 
on the filter design selected in the Algorithm pop-up menu, the band 
configuration selected in the Type pop-up menu, and the state of the Minimum 
Order check box. 

Specifications Parameters—Automatic Order Selection. When the Minimum Order 
box is checked, all of the filter designs except Least Squares FIR display the 
same set of parameters in the Specifications panel. (The order for the Least 
Squares FIR design cannot be automatically computed). For lowpass and 
highpass band configurations, these parameters include the passband edge 
frequency Fp, the stopband edge frequency Fs, the passband ripple Rp, and the 
stopband attenuation Rs. For bandpass and bandstop configurations, the 
parameters include the lower and upper passband edge frequencies, Fp1 and 
Fp2, the lower and upper stopband edge frequencies, Fs1 and Fs2, the 
passband ripple Rp, and the stopband attenuation Rs. Frequency values are in 
Hertz, and ripple and attenuation values are in dB. 

Specifications Parameters—Manual Order Selection. When the Minimum Order box 
is not checked, an Order parameter for setting the filter order appears below 
it, and each filter design displays a unique set of parameters in the 
Specifications panel. These are shown in the table below, where Wp and Ws 
are the weights for the passband and stopband, Beta is the Kaiser window β 
parameter, Fc is the cutoff frequency, and F3db is the 3 dB frequency.
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In general, follow these steps to design a new filter using the Specifications 
panel parameters:

1 Click-and-drag to select an appropriate filter 
design from the Algorithm pop-up menu.

2 Click-and-drag to select the band configuration 
from the Type pop-up menu.

3 Type in the Specifications panel’s editable fields 
to change the values for band edge frequencies, 
ripple, attenuation, etc.

4 Press Enter (Return on Macintosh) after typing in an editable text box to 
enter the value. If Auto Design is not checked, press the Apply button below 
the Specifications panel to update the magnitude plot.

5 To specify a filter order, click Minimize Order to deselect the check box and 
disable automatic filter order selection. Then type a value for the Order 
parameter. If Auto Design is not checked, press Apply.

Edit a new filter or an existing filter in the same way. Note that when Auto 
Design is disabled and you change a filter’s parameter values, the magnitude 
response plot changes from solid lines to dashed lines. This indicates that the 
plot no longer reflects the current specifications. When you press the Apply 
button, the new response is computed and the lines revert to the solid style. 
When Auto Design is enabled, the plot updates whenever you change a filter 
specification.

NOTE  You can only edit filters that were designed in SPTool.

Lowpass Highpass Bandpass Bandstop
Equiripple FIR Fp, Fs, Wp, Ws Fp, Fs, Wp, Ws Fp1, Fp2, Fs1, Fs2, Wp, Ws Fp1, Fp2, Fs1, Fs2, Wp, Ws
Least Squares FIR Fp, Fs, Wp, Ws Fp, Fs, Wp, Ws Fp1, Fp2, Fs1, Fs2, Wp, Ws Fp1, Fp2, Fs1, Fs2, Wp, Ws
Kaiser Window FIR Fc, Beta Fc, Beta Fc1, Fc2, Beta Fc1, Fc2, Beta
Butterworth IIR F3db F3db F3db 1, F3db 2 F3db 1, F3db 2
Chebyshev Type I IIR Fp, Rp Fp, Rp Fp1, Fp2, Rp Fp1, Fp2, Rp
Chebyshev Type II IIR Fs, Rs Fs, Rs Fs1, Fs2, Rs Fs1, Fs2, Rs
Elliptic IIR Fp, Rp, Rs Fp, Rp, Rs Fp1, Fp2, Rp, Rs Fp1, Fp2, Rp, Rs
0
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Filter Measurements Panel
When you design a filter, the Measurements panel (shown at left) displays the 
values of filter parameters that do not appear in the Specifications panel. For 
example, when the Filter Designer provides an Fs parameter in the 
Specifications panel, it displays the Actual Fs value in the Measurements 
panel. Similarly, when the Minimum Order option is selected in the 
Specifications panel, the computed filter order is displayed in the Order field 
of the Measurements panel. The values in the Measurements panel are 
updated whenever the magnitude plot is redrawn.

Measurement Parameters – Automatic Order Selection. The parameter combinations 
that appear in the Measurements panel are shown in the following two tables. 
The first table lists the parameters that appear when Minimum Order is 
checked (automatic order selection). The stopband edge frequency parameters 
listed (Fs, Fs1, Fs2) are the actual edge frequencies for the design, rather than 
the desired frequencies entered in the Specifications panel.

Measurement Parameters – Manual Order Selection. The next table shows the 
parameter sets that appear in the Measurements panel when Minimum 
Order is not selected. The measurements that can be interactively changed by 
dragging the red measurement lines on the response plot are shown in italics.

Lowpass Highpass Bandpass Bandstop

Equiripple FIR
Order, Rp, Rs, Wp, 
Ws

Order, Rp, Rs, Wp, 
Ws

Order, Rp, Rs, Wp, Ws Order, Rp, Rs, Wp, Ws

Least Squares FIR Order cannot be automatically computed.

Kaiser Window FIR
Order, Fc, Beta, 
Rp, Rs

Order, Fc, Beta, 
Rp, Rs

Order, Fc1, Fc2, Beta, Rp, 
Rs

Order, Fc1, Fc2, Beta, Rp, 
Rs

Butterworth IIR Order, Rp, F3db Order, Rp, F3db Order, Rp, F3db 1, F3db 2 Order, Rp, F3db 1, F3db 2
Chebyshev Type I IIR Order, Fs Order, Fs Order, Fs1, Fs2 Order, Fs1, Fs2
Chebyshev Type II IIR Order, Fs Order, Fs Order, Fs1, Fs2 Order, Fs1, Fs2
Elliptic IIR Order, Fs Order, Fs Order, Fs1, Fs2 Order, Fs1, Fs2

Lowpass Highpass Bandpass Bandstop
Equiripple FIR Rp, Rs Rp, Rs Rp, Rs Rp, Rs
Least Squares FIR Rp, Rs Rp, Rs Rp, Rs Rp, Rs
Kaiser Window FIR Fp, Fs, Rp, Rs Fp, Fs, Rp, Rs Fp1, Fp2, Fs1, Fs2, Rp, Rs Fp1, Fp2, Fs1, Fs2, Rp, Rs
Butterworth IIR Fp, Fs, Rp, Rs Fp, Fs, Rp, Rs Fp1, Fp2, Fs1, Fs2, Rp, Rs Fp1, Fp2, Fs1, Fs2, Rp, Rs
Chebyshev Type I IIR Fs, Rs Fs, Rs Fs1, Fs2, Rs Fs1, Fs2, Rs
Chebyshev Type II IIR Fp, Rp Fp, Rp Fp1, Fp2, Rp Fp1, Fp2, Rp
Elliptic IIR Fs Fs Fs1, Fs2 Fs1, Fs2
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Magnitude Plot (Display) Area
The response of the filter selected in the Filter pop-up menu is displayed 
graphically in the magnitude response plot area of the Filter Designer, and its 
characteristics are shown in the Specifications and Measurements panels.

You can zoom in on the displayed filter in the magnitude plot (see “Zoom 
Controls” on page 5-30) and you can drag the specification lines to visually 
redesign the displayed filter (see the next section). 

Specification Lines
You can redesign a filter by manipulating the green specification lines in the 
magnitude plot. Using the specification lines, you can change the passband 
ripple, stopband attenuation, and edge frequencies of a filter.

• Set passband ripple or stopband attenuation by clicking on a green line and 
dragging it up or down. The Rp and Rs values displayed in the 
Specifications panel change as you drag. If Auto Design is checked, the 
response plot also updates as you drag the lines. If Auto Design is disabled, 
the response plot updates when you release the mouse.

NOTE  With IIR filters you can only drag the lower passband bar and the 
stopband bar. The upper passband bar is fixed at 0.

• Set edge frequencies either by clicking on the edge of a horizontal green line 
(the mouse pointer changes to ) and dragging the edge to a new frequency, 
or by clicking anywhere on a vertical green line (if the Filter Designer 
provides one) and dragging it horizontally to a new frequency. The Fp and Fs 
values displayed in the Specifications panel change as you drag. If Auto 
Design is checked, the response plot also updates as you drag the lines. If 
Auto Design is disabled, the response plot updates when you release the 
mouse.

See “Redesigning a Filter Using the Magnitude Plot” on page 5-68 for details.

Measurement Lines
A number of the filter designs provide rulers on the response plot that allow 
you to measure response magnitude levels. These measurement lines, which 
appear in red on the plot, are available for the Kaiser window, Butterworth, 
2
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Chebyshev type I, and Chebyshev type II filters when the Minimum Order 
check box is not selected. As you drag a measurement line, the corresponding 
values in the Measurements panel change to reflect the measurement line’s 
current position.

Designing Finite Impulse Response (FIR) Filters
The Filter Designer provides three options for basic FIR filter design. These 
options allow you to create FIR filters with standard band configurations 
(lowpass, highpass, bandpass, or bandstop configurations only). The three 
options for FIR filter design in the Algorithm pop-up menu are:

• Equiripple FIR, which accesses the toolbox function remez to create an 
equiripple FIR filter. 

• Least Squares FIR, which accesses the toolbox function firls to create an 
FIR filter using the least square design method.

• Kaiser Window FIR, which accesses the fir1 function to create an FIR filter 
using a Kaiser window. 

Example: FIR Filter Design, Standard Band Configuration
In the following example, use the Kaiser window filter design option:

1 Select Kaiser Window FIR as the filter design from the Algorithm pop-up 
menu.

2 Select bandpass from the Type pop-up menu as the configuration.

3 Set the filter’s sampling frequency to 2000 Hz by entering this value in the 
Sampling Frequency text box. 

4 Click Apply to redraw the response with these settings.

NOTE  This must be done before you change the following parameters.

5 Check the Minimum Order check box to enable automatic order selection.
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6 Set Fp1 to 290 and Fp2 to 525. 

These fields respectively define the lower and upper passband edge 
frequencies in Hertz.

7 Set Fs1 to 200 and Fs2 to 625.

These fields respectively define the lower and upper stopband edge 
frequencies in Hertz.

8 Set Rp (passband ripple) to 4 and Rs (stopband attenuation) to 30.

Rp and Rs are specified in dB.

9 Press the Apply button.

The Filter Designer calls fir1 to create the filter using a Kaiser window. The 
Filter Designer updates the magnitude plot to show the new filter’s magnitude 
response:
4
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Filter Design Options
When the Minimum Order option is disabled, you can specify parameters that 
define characteristics unique to certain filter types:

• For equiripple and least squares filters: the weights for error minimization

• For Kaiser window filters: the cutoff frequency and β parameter of the Kaiser 
window

Order Selection for FIR Filter Design
As described earlier, the FIR filter design options available through the Filter 
Designer call the toolbox functions remez, firls, and fir1. In calculating filter 
order, the Filter Designer uses the same guidelines as the toolbox functions:

• The Equiripple FIR design option calls the remezord order estimation 
function to determine a filter order that meets a set of specifications. In some 
cases, remezord underestimates the filter order n. If the filter does not 
appear to meet the given specifications using Minimum Order order 
selection, deselect Minimum Order and manually specify a slightly larger 
order (n+1 or n+2).

• The Least Squares FIR design option calls the toolbox function firls. 
Because the toolbox does not provide an order estimation function for use 
with firls, you cannot use the Minimum Order option with the Least 
Squares FIR method.

• The Kaiser Window FIR design option calls kaiserord, the order estimation 
function, which sometimes underestimates the filter order n. If the filter does 
not appear to meet the given specifications using Minimum Order order 
selection, deselect Minimum Order and manually specify a slightly larger 
order (n+1 or n+2).

All of the FIR filter design options in the Filter Designer require an even filter 
order for the highpass and bandstop configurations. For more information on 
order selection with the FIR filter design options, see the reference descriptions 
of remez, remezord, kaiserord, firls, and fir1 in Chapter 6.
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Designing Infinite Impulse Response (IIR) Filters
The Filter Designer lets you design a number of classical IIR filters, including 
Butterworth, Chebyshev type I, Chebyshev type II, and elliptic filters.

Example: Classical IIR Filter Design
In the following example, design a simple Chebyshev type I filter:

1 Select Chebyshev Type I IIR as the filter design from the Algorithm 
pop-up menu.

2 Select highpass from the Type menu as the configuration.

3 Set the filter’s sample frequency to 2000 Hz by entering this value in the 
Sampling Frequency text box. 

4 Click Apply to redraw the response with these settings.

NOTE  This must be done before you change the following parameters.

5 Check the Minimum Order check box.

6 Set Fp (passband edge frequency) to 800 and Fs (stopband edge frequency) 
to 700.

Fp and Fs are specified in Hertz.

7 Set Rp (passband ripple) to 2.5 and Rs (stopband attenuation) to 35.

Rp and Rs are specified in dB.

8 Press Apply to draw the magnitude response.

9 Deselect Minimum Order and specify a filter order of 7. Press Apply to 
redraw the magnitude response.
6
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The Filter Designer calls the appropriate filter design function to create the 
filter:

To zoom in on plot details, use the zoom control buttons as described in “Zoom 
Controls” on page 5-30.

Filter Design Options
When the Minimum Order option is disabled, you can specify parameters that 
define characteristics unique to certain filter types:

• For Butterworth filters: the 3 dB frequencies

• For Chebyshev type I filters: the passband edge frequencies

• For Chebyshev type II filters: the stopband edge frequencies

• For elliptic filters: the passband edge frequencies
5-67



5 Interactive Tools

5-6
In the following example, redesign the Chebyshev type I filter from the 
previous example as a Butterworth filter, using a 3 dB frequency of 800 Hz:

1 Select the Butterworth IIR filter design from the Algorithm menu.

The magnitude response plot changes to reflect the new design.

2 Type a value of 800 in the F3db text field.

3 Press Apply to update the response plot.

Order Selection for IIR Filter Design
The IIR filter design options available through the Filter Designer call the 
toolbox filter design functions. In calculating the order for a given filter, the 
Filter Designer uses the corresponding order estimation function if the 
Minimum Order check box is selected.

For details on order selection with the IIR filter design options, see the 
reference descriptions of buttord, cheb1ord, cheb2ord, and ellipord in 
Chapter 6.

Redesigning a Filter Using the Magnitude Plot
After designing a filter in the Filter Designer, you can redesign it by dragging 
the specification lines in the magnitude plot. Use the specification lines to 
change passband ripple, stopband attenuation, and edge frequencies (see 
“Specification Lines” on page 5-62 for details). In the following example, create 
a Chebyshev filter and modify it by dragging the specification lines:

1 Create a Chebyshev type I highpass filter with a sample frequency of 
2000 Hz. Set the following parameters:

Fp = 800
Fs = 700
Rp = 2.5
Rs = 35

2 Check Minimum Order so the Filter Designer can calculate the lowest filter 
order that produces the desired characteristics.

3 Press Apply to update the response plot.
8
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4 Position the cursor over the green line specifying the stopband.

The cursor changes to the up/down drag indicator.

5 Drag the line until the Rs (stopband attenuation) field reads 100.

Note that the Order value in the Measurements panel changes because a 
higher filter order is needed to meet the new specifications.

Saving Filter Data
After designing a filter in the Filter Designer, you can export the filter 
information to the workspace or to disk using Export... from the File menu in 
SPTool. The filter information is stored in a structure that you can access to 
retrieve the coefficients and design parameters of the filter you created. The 
filter structure also contains a number of fields that are used internally by 
SPTool.

To see the fields of the filter structure, first export a filter to the workspace:

1 Create a new filter by pressing New Design in SPTool. The new filter is 
called filt1.

2 Select Export... from the File menu.

3 In the Export from SPTool dialog box, select filt1 and press the Export 
to Workspace button.

4 Type who at the MATLAB command line to look at the variables in the 
workspace. The variable called filt1 is the filter structure you exported 
from SPTool.

5 At the command line type filt1 to list the fields of the filter structure.

The tf, Fs, and specs fields of the filter structure contain the information that 
describes the filter. These fields are discussed below. The other fields in the 
structure are used internally by SPTool, and are subject to change in future 
releases.
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tf. The tf field is a structure containing the transfer function representation of 
the filter: 

• tf.num contains the numerator coefficients, and 

• tf.den contains the denominator coefficients

both in descending powers of z:

where b is a vector containing the coefficients from the tf.num field, a is a 
vector containing the coefficients from the tf.den field, nb is the numerator 
order, and na is the denominator order. You can change the filter 
representation from the default transfer function to another form by using the 
tf2ss or tf2zp functions.

Fs. The Fs field contains the sampling frequency of the filter in Hertz.

specs. The specs field is a structure containing information about the filter 
design. The first field, specs.currentModule, contains a string representing 
the design selected for the filter in the Filter Designer’s Algorithm pop-up 
menu. The possible contents of the currentModule field, and the corresponding 
designs, are shown below.

currentModule Algorithm

fdbutter Butterworth IIR

fdcheby1 Chebyshev Type I IIR

fdcheby2 Chebyshev Type II IIR

fdellip Elliptic IIR

fdfirls Least Squares FIR

fdkaiser Kaiser Window FIR

fdremez Equiripple FIR

H z( ) B z( )
A z( )
------------ b 1( ) b 2( )z 1– … b nb 1+( )z nb–

+ + +

a 1( ) a 2( )z 1– … a na 1+( )z na–
+ + +

------------------------------------------------------------------------------------------------= =
0
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Following the specs.currentModule field, there may be up to seven additional 
fields, with labels such as specs.fdremez, specs.fdfirls, etc. The design 
specifications for the most recently exported filter are contained in the field 
whose label matches the currentModule string. For example, if the specs 
structure is

currentModule: 'fdkaiser'
fdremez: [1x1 struct]
fdfirls: [1x1 struct]
fdkaiser: [1x1 struct]

the filter specifications are contained in the fdkaiser field, which is itself a 
data structure. 

The specifications include the parameter values from the Specifications panel 
of the Filter Designer, such as band edges and filter order. For example, the 
Kaiser window filter above has the following specifications stored in 
specs.fdkaiser:

setOrderFlag: 0
type: 1
f: [0 0.1000 0.1500 1]
Rp: 3
Rs: 20
Wn: 0.1250
order: 34
Beta: 0
wind: [35x1 double]

Since certain filter parameters are unique to a particular design, this structure 
has a different set of fields for each filter design. For example, the Beta field 
above only appears in the specs structure if the design is a Kaiser window FIR 
filter. 
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The table below lists the possible specifications fields that can appear in the 
export structure, and describes their contents.

Parameter Description

Beta Kaiser window β parameter.

f Contains a vector of band-edge frequencies, normalized 
to 1 (i.e., 1 = Nyquist).

Fpass Passband cutoff frequencies. Scalar for lowpass and 
highpass designs, two-element vector for bandpass and 
bandstop designs.

Fstop Stopband cutoff frequencies. Scalar for lowpass and 
highpass designs, two-element vector for bandpass and 
bandstop designs.

m The response magnitudes corresponding to the band-edge 
frequencies in f.

order Filter order.

Rp Passband ripple (dB)

Rs Stopband attenuation (dB)

setOrderFlag Contains 1 if the filter order was specified manually (i.e., 
the Minimum Order box in the Specifications panel was 
not checked). Contains 0 if the filter order was computed 
automatically.

type Contains 1 for lowpass, 2 for highpass, 3 for bandpass, or 
4 for bandstop.

w3db 3 dB frequency for Butterworth IIR designs.

wind Vector of Kaiser window coefficients. 

Wn Cutoff frequency for the Kaiser window FIR filter when 
setOrderFlag = 1.

wt Vector of weights, one weight per frequency band.
2
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Viewing Frequency Response Plots
It is often useful to view a filter’s frequency response, impulse response, and 
step response during the filter design process. You can use the Filter Viewer to 
view frequency-domain information about filters in the Filter Designer:

1 Activate SPTool from the Window menu.

2 Make sure the filters you want to analyze are selected in the Filters list.

3 Click View in the Filter panel.

The Filter Viewer is activated with the selected filters displayed.

4 To edit one of the filters you’re viewing, you can reactivate the Filter 
Designer from the Window menu in the Filter Viewer.

5 When you want to review a filter’s characteristics after you’ve edited it, 
reactivate the Filter Viewer from the Window menu in the Filter Designer.

When the Filter Viewer is open at the same time that the Filter Designer is 
open, they both display the same filter. You can move back and forth between 
the Filter Designer and the Filter Viewer until the filter design is finished.

You can apply the filter to a signal by activating SPTool, selecting the filter in 
the Filters list, and the signal to apply it to from the Signals list, and pressing 
Apply. See “Applying a Filter” on page 5-19 for details.

See “Using the Filter Viewer: Interactive Filter Analysis” on page 5-74 for more 
information on the Filter Viewer.
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Using the Filter Viewer: Interactive Filter Analysis
An important aspect of filter design is filter analysis, which encompasses both 
frequency and time-domain analysis of a filter. The Filter Viewer is a 
GUI-based frequency analysis tool that provides an interactive environment 
for the graphical display of digital filter characteristics.

The Filter Viewer can display six different characteristics subplots of a selected 
filter. Any combination of the six subplots may be displayed.

Using the Filter Viewer you can:

• View magnitude-response plots for one or more filters

• View phase-response plots for one or more filters

• View group-delay plots for one or more filters

• View zero-pole plots for one or more filters

• View impulse-response plots for one or more filters

• View step-response plots for one or more filters

• Zoom in to explore filter response details

• Modify selected plot parameters and display characteristics

• Measure a variety of characteristics of the filter response 

For information on frequency analysis using toolbox functions from the 
command line or from M-files, see “Frequency Response” in Chapter 1 of this 
manual.

Opening the Filter Viewer
Open or activate the Filter Viewer from SPTool:

1 Select one or more filters from the Filters list in SPTool.

2 Press View in the Filters panel in SPTool.

The Filter Viewer is activated and the selected filters are loaded into the 
Filter Viewer and displayed.
4
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Basic Filter Viewer Functions
The Filter Viewer has the following components:

• A Plots panel for selecting which subplots display in the main plots window

• A Rulers panel and line display controls for making signal measurements 
and comparisons

• A Frequency Axis panel for specifying x-axis scaling in the main plots 
window

• A filter identification panel that displays information about the currently 
selected filter(s)

• A main plots (display) area for viewing one or more frequency-domain plots 
for the selected filter(s)

• Zoom controls for getting a closer look at filter response characteristics

When you first open or activate the Filter Viewer, it displays the default plot 
configuration for the selected filter(s):

Plots panel, including menus for 
modifying plot characteristics

Frequency Axis panel

Filter ID panel

View (zoom) controls

Rulers panel, including controls for measuring filter responses

Line display controls
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The filters’ magnitude and phase plots are displayed. The frequency axis of the 
plots is set to linear, and the frequency axis range is set to [0,Fs/2].

You can choose to display one or any combination of the six available subplots 
by using the check boxes in the Plots panel, and you can modify many of the 
plot display characteristics using the pop-up menus in the Plots panel and the 
Frequency Axis panel.

Menus

File Menu. Use Close from the File menu to close the Filter Viewer. Settings you 
changed and saved using the Preferences… window in SPTool are saved and 
used the next time you open a Filter Viewer.

Window Menu. Use the Window menu to select a currently open MATLAB 
Figure window.

Filter Identification Panel
This panel displays the variable names and the highest sampling frequency of 
the currently selected filters. To change names or sampling frequencies, use 
Name… or Sampling Frequency… from the Edit menu in SPTool.

Plots Panel
The check boxes in this panel select the subplots to display in the main plots 
area. Any combination of subplots may be displayed.

To display a subplot, check the box at the left of the plot description.
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Using the Filter Viewer: Interactive Filter Analysis
There are six available subplots:

• Magnitude: displays the magnitude of the frequency response of the 
currently selected filter(s).

• Phase: displays the phase of the frequency response.

• Group Delay: displays the negative of the derivative of the phase response.

• Zeros and Poles: displays the poles and zeros of the filter transfer 
function(s) and their proximity to the unit circle.

• Impulse Response: displays the response of the currently selected filter(s) 
to a discrete-time unit-height impulse at t=0.

• Step Response: displays the response of the currently selected filter(s) to a 
discrete-time unit-height step function.

You can customize the display characteristics of the magnitude and phase 
subplots using the Magnitude and Phase pop-up menus. The options include:

• Magnitude: Scaling for the magnitude plot may be linear, log, or decibels.

• Phase: Phase units may be degrees or radians.

You can also change the magnitude and phase display characteristics for the 
Filter Viewer using the Filter settings panel of the Preferences dialog in 
SPTool.

Frequency Axis Settings
You can change frequency axis scaling and range parameters for plots in the 
Filter Viewer.

Click on the option in the Frequency Axis panel you want to edit and drag to 
select a value. The options include:

• Scale: Scaling for the frequency axis may be linear or log.

• Range: The range for the frequency axis may be [0,Fs/2], [0,Fs], or 
[-Fs/2,Fs/2], where Fs represents the filter’s sampling frequency.

The frequency range cannot be negative if Scale is set to log.

You can also change the frequency axis display characteristics for the Filter 
Viewer using the Filter Viewer settings panel of the Preferences dialog in 
SPTool.
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Zoom Controls
The available zoom controls in the Filter Viewer are Mouse Zoom and Full 
View. You can zoom independently in each displayed subplot.

By default, persistent zooming is disabled in the Filter Viewer. You can turn 
persistent zooming on from the Filter Viewer settings panel of the 
Preferences dialog in SPTool.

See “Zoom Controls” on page 5-30 for details on using the zoom controls in the 
Filter Viewer.

Help Button
To use context-sensitive help, click on the Help button. The mouse pointer 
becomes an arrow with a question mark symbol. You can then click on anything 
in the Filter Viewer, including menu items, to find out what it is and how to 
use it. 

Main Plots Area
One or more of the six filter response subplots may be displayed graphically in 
the main plots area of the Filter Viewer. You can specify how the subplots are 
arranged by selecting Filter Viewer Tiling from the Preferences dialog in 
SPTool. The options are 2-by-3 Grid, 3-by-2 Grid, Vertical (6-by-1 Grid), and 
Horizontal (1-by-6 Grid).
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Using the Filter Viewer: Interactive Filter Analysis
The following figure shows the Filter Viewer when four subplots are turned on 
and the 2-by-3 grid option is selected:

You can experiment to find the tiling option that works best for each specific 
combination and number of subplots.

You can zoom in on a subplot by clicking on Mouse Zoom and then clicking on 
or dragging over a selected area of the subplot. By default, mouse zooming in 
the Filter Viewer is not persistent; after you click once, the zoom mode is 
turned off. You can make zooming persistent by checking Stay in Zoom-mode 
after Zoom in the SPTool Preferences dialog box. This allows you to click 
repeatedly in a subplot to continue to zoom in on a particular feature of the 
display.
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After you zoom in on a subplot, you can click and drag to pan around the 
subplot:

1 Click on Mouse Zoom to turn on mouse zoom mode.

2 Click on a feature of a subplot to zoom in on it.

3 If persistent zooming is enabled, click on Mouse Zoom again to turn off 
mouse zoom mode.

4 Click again in the same subplot, hold down the mouse button until the hand 
cursor is displayed, and drag the mouse to pan around the subplot.

Viewing Filter Plots
This section has a brief description and picture of each of the six filter response 
plots available in the Filter Viewer. A sequence of connected examples shows 
you how to display each plot on its own; you can also display any combination 
of plots, as needed.

Each plot in the example sequence displays the response of an order 22 
equiripple lowpass filter with a sampling frequency of 1 Hz.

Regardless of how many or what combination of plots is displayed, you can 
zoom in on and pan each subplot independently.

Viewing Magnitude Response
A magnitude response plot is generally the simplest way to obtain a high-level 
view of a filter’s shape and fit to specifications. In the following example, use 
the Filter Designer to create a standard default filter and then view its 
magnitude response plot in the Filter Viewer:
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Using the Filter Viewer: Interactive Filter Analysis
1 From SPTool, click Create.

The Filter Designer is activated and a standard default filter is created and 
displayed:

This is an order 22 equiripple lowpass filter with a sampling frequency of 
1 Hz.

2 Use the Window menu in the Filter Designer to activate SPTool.

3 Click View from the Filters panel in SPTool to activate the Filter Viewer.

The Filter Viewer is displayed with a magnitude response plot and a phase 
response plot.

4 Click the check box next to the Phase option to turn off the phase plot.
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The magnitude plot for the default filter is displayed:

By default, this plot uses the default scaling (linear) for both axes and the 
default range for the frequency axis.

You can change the following display characteristics of the magnitude plot:

• Use the Magnitude pop-up menu to choose between linear, log, or decibels 
scaling of the y-axis.

• Use the Scale pop-up menu to choose between linear and log scaling of the 
x-axis.

• Use the Range pop-up menu to choose between the following ranges for the 
x-axis: [0,Fs/2], [0,Fs], or [-Fs/2,Fs/2], where Fs represents the filter’s 
sampling frequency.

Viewing Phase Response
In addition to displaying magnitude response, the Filter Viewer can calculate 
and plot the filter’s phase response. Phase response is the angular component 
of a filter’s frequency response. To display only a phase response plot for the 
current filter:
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Using the Filter Viewer: Interactive Filter Analysis
1 Click the check box next to the Magnitude option to turn off the magnitude 
plot.

2 Click the check box next to the Phase option to turn on the phase plot and 
update the display:

By default, this plot uses the default phase (degrees) and the default scaling 
and range for the frequency axis.

You can change the following display characteristics of the phase plot:

• Use the Phase pop-up menu to choose between displaying phase in degrees 
or radians.

• Use the Scale pop-up menu to choose between linear and log scaling of the 
x-axis.

• Use the Range pop-up menu to choose between the following ranges for the 
x-axis: [0,Fs/2], [0,Fs], or [-Fs/2,Fs/2], where Fs represents the filter’s 
sampling frequency.
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Viewing Group Delay
Group delay is a measure of the average delay of a filter as a function of 
frequency. To display only a group delay plot for the currently selected filter(s):

1 Click the check box next to the Phase option to turn off the phase plot.

2 Click the check box next to the Group Delay option to turn on the group 
delay plot and update the display:

By default, this plot uses the default scaling and range for the frequency 
axis.

You can change the following display characteristics of the group delay plot:

• Use the Scale pop-up menu to choose between linear and log scaling of the 
x-axis.

• Use the Range pop-up menu to choose between the following ranges for the 
x-axis: [0,Fs/2], [0,Fs], or [-Fs/2,Fs/2], where Fs represents the highest 
sampling frequency of the currently selected filters.
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Using the Filter Viewer: Interactive Filter Analysis
Viewing a Zero-Pole Plot
The zero-pole plot displays the poles and zeros of the transfer function and their 
proximity to the unit circle. An x represents a pole of the transfer function; a o 
represents a zero of the transfer function. To display only a zero-pole plot for 
the currently selected filter(s):

1 Click the check box next to the Group Delay option to turn off the group 
delay plot.

2 Click the check box next to the Zeros and Poles option to turn on the 
zero-pole plot and update the display:

Viewing Impulse Response
The impulse response plot displays the response of the current filter(s) to a 
discrete-time unit-height impulse at t=0.
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To display only an impulse response plot for the currently selected filter(s):

1 Click the check box next to the Zeros and Poles option to turn off the 
zero-pole plot.

2 Click the check box next to the Impulse Response option to turn on the 
impulse response plot and update the display:

You can change the following display characteristics of the impulse response 
plot:

Edit the Time Response Length field in the Filter Viewer preferences panel 
to set the number of samples used to display the impulse response.
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Viewing Step Response
The step response plot displays the response of the current filter(s) to a 
discrete-time unit-height step function. To display only a step response plot for 
the currently selected filter(s):

1 Click the check box next to the Impulse Response option to turn off the 
impulse response plot.

2 Click the check box next to the Step Response option to turn on the step 
response plot and update the display:

You can change the following display characteristics of the step response plot:

Edit the Time Response Length field in the Filter Viewer preferences panel 
to set the number of samples used to display the step response.
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Using the Spectrum Viewer: Interactive PSD Analysis
The Spectrum Viewer provides an interactive environment for the estimation 
of power spectral density for one data channel. It allows you to view and modify 
spectra created in SPTool.

Using the Spectrum Viewer, you can control the spectral computation 
parameters, including FFT length, window type, and sampling frequency. 
Using the Spectrum Viewer you can:

• View and compare spectral density plots

• Use different estimation methods, including Burg, FFT, MTM, MUSIC, 
Welch, and Yule-Walker AR

• Modify spectrum parameters such as FFT length and window type

For information on spectral analysis using toolbox functions from the command 
line or from M-files, see Chapter 3 of this manual.

Opening the Spectrum Viewer
You can open or activate the Spectrum Viewer from SPTool by pressing one of 
the following buttons: Create, View, and Update. See “Creating a Spectrum” 
on page 5-19, “Viewing a Spectrum” on page 5-20, and “Updating a Spectrum” 
on page 5-20 for complete details.

Here is a brief summary of each method of activating the Spectrum Viewer:

• To create a spectrum, select a signal in SPTool and press Create. Press 
Apply in the Spectrum Viewer.

A default spectrum of the selected signal is generated and displayed. You can 
view it in a variety of ways, measure it, and modify it in the Spectrum 
Viewer.

• To view a spectrum, select one or more spectra in SPTool and press View in 
the Spectra panel.

• To update a spectrum, select exactly one signal and one spectrum in SPTool 
and press Update. Press Apply in the Spectrum Viewer.

The spectrum is updated to reflect the data in the currently selected signal.
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Using the Spectrum Viewer: Interactive PSD Analysis
Basic Spectrum Viewer Functions
The Spectrum Viewer window has the following components:

• A Parameters panel for viewing and modifying the parameters or method of 
the current spectrum

• A signal identification panel that displays information about the signal 
linked to the current spectrum

• A main axes (display) area for viewing spectra graphically

• Zoom controls for getting a closer look at spectral features

• Rulers and line-display controls for making spectral measurements and 
comparisons

• Spectrum management controls: Inherit from..., Revert, and Apply

• Menu options for modifying plot display characteristics

Main axes area

Signal ID

Ruler and line display controls

Zoom controls

Parameters panel
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Menus

File Menu. Use Close from the File menu to close the Spectrum Viewer. All 
spectrum selection and ruler information will be lost. Settings you changed 
using the Preferences window in SPTool are saved and used the next time you 
open the Spectrum Viewer.

Options Menu. Use these options to change scaling and range parameters for 
plots in the Spectrum Viewer.

Click on the option you want to edit and drag to select a value.

The options include:

• Magnitude Scale: Scaling for the magnitude plot may be dB or linear.

• Frequency Range: The range for the frequency axis may be [0, Fs/2], [0, Fs], 
or [-Fs/2, Fs/2], where Fs is the sampling frequency. If multiple spectra are 
displayed, the value of Fs is the maximum of all the sampling frequencies.

Fs is not defined for the case of a spectrum whose signal is <None>, that is, a 
spectrum whose associated signal has been deleted from SPTool. In this case, 
a value twice the highest frequency in the spectrum’s frequency vector is 
chosen.

The frequency range cannot be negative if Frequency Scale is set to log.

• Frequency Scale: Scaling for the frequency axis may be linear or log.

Window Menu. Use the window menu to select a currently open MATLAB 
Figure window.

Signal ID Panel
This panel displays information about the signal linked to the currently 
selected spectrum. The information includes the signal’s name, size, data type 
(real or complex), and sampling frequency. To change any of these signal 
properties, use SPTool.

To associate a completely new signal with a displayed spectrum, select the 
signal in SPTool and click Update in the Spectra panel.
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Using the Spectrum Viewer: Interactive PSD Analysis
Spectrum Management Buttons

Inherit from… Choose a spectrum from this menu to let the active spectrum 
inherit its parameters (not including the associated signal).

Click on Inherit from… and drag to select the spectrum from which you want 
to inherit parameters.

Revert. Restores the properties of the current spectrum to what they were the 
last time Apply was pressed.

Apply. Compute and display the active spectrum using the parameters set in 
the Parameters panel.

Zoom Controls
The available zoom controls in the Spectrum Viewer are Mouse Zoom, Full 
View, Zoom In-Y, Zoom Out-Y, Zoom In-X, and Zoom Out-X. See “Zoom 
Controls” on page 5-30 for details on using the zoom controls in the Spectrum 
Viewer.

Ruler and Line Display Controls
Using the rulers and line-display controls, you can measure a variety of 
characteristics of spectra in the Spectrum Viewer. See “Ruler Controls” on page 
5-32 for details on using rulers and modifying line displays in the Spectrum 
Viewer.

Help Button
To use context-sensitive help, click on the Help button. The mouse pointer 
becomes an arrow with a question mark symbol. You can then click on anything 
in the Spectrum Viewer, including menu items, to find out what it is and how 
to use it. 
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Main Axes Display Area
The Spectra list in SPTool shows all spectra in the current SPTool session. One 
or more spectra may be selected. The spectral data of all selected spectra are 
displayed graphically in the main axes display area of the Spectrum Viewer.

NOTE  If a spectrum is not displayed, or if it is displayed with the wrong signal 
information, press Apply to recompute the spectral data.

When there is only one spectrum displayed, its properties are displayed in the 
Parameters panel and its measurements are displayed in the Rulers panel. 
When more than one spectrum is displayed, select the line you want to focus on.

When a spectrum is selected, you can use the ruler controls on the selected line 
(see “Making Signal Measurements” on page 5-37) and you can modify its 
parameters (see below). The label of the selected spectrum (line) is displayed in 
the Selection pop-up menu.

There are two ways to select a spectrum (line):

• Click on the Selection pop-up menu and drag to select the line to measure

or

• Move the mouse pointer over any point in the line you want to select and click 
on it

See “Selecting a line to measure” on page 5-33 for details.

Click-and-Drag Panning. You can use the mouse to pan around the main axes 
display: 

Click on a line in the main axes, hold down the mouse button, and drag the 
mouse.

Click-and-drag panning is not enabled in mouse zoom mode.

Making Spectrum Measurements
Use the rulers to make a variety of measurements on the selected spectrum. 
See “Making Signal Measurements” on page 5-37 for details.
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Viewing Spectral Density Plots
Spectral density estimation is a technique that finds the approximate 
frequency content of a signal. The Spectrum Viewer calculates single-channel 
power spectral density (PSD). When you first generate a spectrum, the 
Spectrum Viewer shows a default power spectral density function of the input 
data. By default, the Spectrum Viewer uses the Burg method of PSD 
computation with an order of 10 and an FFT length of 1024.

You can change plot properties and computation parameters for a displayed 
spectrum, and you can set confidence intervals.

Controlling and Manipulating Plots

Changing Plot Properties
You can control the axes units and scaling properties that affect the Spectrum 
Viewer’s plots.

Use the Options menu to select:

• Linear or decibel scaling for the magnitude axis

• Linear or logarithmic scaling for the frequency axis

• The frequency range to view

See “Options Menu” on page 5-90 for details.

You can also zoom in on any of the Spectrum Viewer’s plots. See “Zoom 
Controls” on page 5-30 for details.

You can set other scaling properties in the Parameters panel, depending on 
the PSD method computation parameters you choose.

Choosing Computation Parameters
The Spectrum Viewer lets you control the PSD computation parameters of the 
selected spectrum. Different parameters are available, depending on which 
method of PSD computation you choose. Set these parameters from the 
Parameters panel, as illustrated in the following steps:
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1 Click on the Method pop-up menu and drag to select one of the following 
methods:

- Burg

- FFT

- MTM

- MUSIC

- Welch

- Yule AR

Appropriate parameter selections are displayed for each method you choose.

2 Modify the appropriate parameters.

- When a parameter is in a pop-up menu, click on the parameter label and 
drag to select a value from the menu.

- When a parameter is in an edit box, type the value or variable into the box.

You can also modify the parameters by using Inherit from to copy the 
parameters of another spectrum in SPTool. See “Inherit from…” on page 
5-91 for details.

3 If you change your mind, you can discard changes you make by clicking 
Revert.

4 To apply the modified parameters, click Apply.

The new parameters are applied to the selected spectrum; the Spectrum 
Viewer recalculates the spectral density function and displays the modified 
spectrum.

Computation Methods and Parameters
You can choose from seven PSD computation methods. Each method has its 
own set of parameters.

This section shows the Parameters panel for each of the PSD computation 
methods. For detailed definitions and values for each parameter, use 
context-sensitive help (see “Help Button” on page 5-91).
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Using the Spectrum Viewer: Interactive PSD Analysis
Burg. For the Burg method, you can specify the following 
parameters:

• Order

Type in a value.
• Nfft

Type in a value.

FFT. For the FFT method, you can specify the following 
parameter:

• Nfft

Type in a value.

MTM. For the MTM method, you can specify the following 
parameters:

• NW

Type in a value.
• Nfft

Type in a value.
• Weights

Select one of the following from the pop-up menu:
- adapt
- unity
- eigen

• Conf. Int.

Check to compute a confidence interval and type in a value 
(see “Setting Confidence Intervals” on page 5-98).
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MUSIC. For the MUSIC method, you can specify the following parameters:

• Signal Dim.

Type in a value.
• Threshold

Type in a value.
• Nfft

Type in a value.
• Nwind

Type in a value.

• Window

Select a window from the pop-up menu.
• Overlap

Type in a value.
• Corr. Matrix

Check if selected signal is a correlation matrix.
• Eigenvector Weights

Check to select eigenvector weights.
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Welch. For Welch’s method, you can specify the following parameters:

• NFFT

Type in a value.
• Nwind

Type in a value.
• Window

Select a window from the pop-up menu.
• Overlap

Type in a value.
• Detrending

Select one of the following from the pop-up menu:
- none
- linear
- mean

• Scaling

Select one of the following from the pop-up menu:
- Unbiased
- Peaks
- by Fs

• Conf. Int.

Check to compute a confidence interval and type in a value (see “Setting 
Confidence Intervals” on page 5-98).

Yule AR. For the Yule AR method, you can specify the following parameters:

• Order

Type in a value.
• Nfft

Type in a value.
• Corr. Matrix

Check if selected signal is a correlation matrix.
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Setting Confidence Intervals
By default, the Spectrum Viewer does not compute confidence intervals for 
spectral density. You can enable the computation of confidence intervals for the 
Welch and MTM methods by following these steps:

1 Click the Conf. Int. check box so that it is selected.

2 Type a value for the confidence level in the Conf. Int. edit box.

This value must be a scalar between 0 and 1.

3 Click Apply.

NOTE  Confidence intervals are only reliable for nonoverlapping sections.

Saving Spectrum Data
After creating a spectrum in SPTool, you can export spectrum information to 
the workspace or to disk using Export... from the File menu in SPTool. The 
spectrum information is stored in a structure that you can access to retrieve the 
spectral power and frequency data. The spectrum structure also contains a 
number of fields that are used internally by SPTool.

To see the fields of the spectrum structure, try exporting a spectrum to the 
workspace:

1 Create a new spectrum if none are currently loaded. Label the spectrum 
spect1.

2 In SPTool, select Export... from the File menu.

3 In the Export dialog box, select spect1 and press the Export to Workspace 
button.

4 Type who at the MATLAB command line to look at the variables in the 
workspace. The variable called spect1 is the spectrum structure you 
exported from SPTool.

5 Type spect1 to list the fields of the spectrum structure.
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Using the Spectrum Viewer: Interactive PSD Analysis
The following structure fields describe the spectrum: 

The other fields are used internally by SPTool, and are subject to change in 
future releases.

Field Description

P The spectral power vector.

f The spectral frequency vector.

confid A structure containing the confidence intervals data:

• The confid.level field contains the chosen 
confidence level.

• The confid.Pc field contains the spectral power 
data for the confidence intervals. 

• The confid.enable field contains a 1 if confidence 
levels are enabled for the spectrum.

signalLabel The name of the signal from which the spectrum was 
generated.

Fs The associated signal’s sample rate.
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Example: Generation of Bandlimited Noise
This section provides a complete example of using the GUI-based interactive 
tools to design and implement an FIR digital filter, apply it to a signal, and 
display signals and spectra. The steps include:

• Importing and naming a signal using SPTool

• Designing a filter using the Filter Designer

• In SPTool, applying the filter to the signal to create another signal

• Viewing the time domain information of the original and filtered signals 
using the Signal Browser

• Comparing the spectra of both signals using the Spectrum Viewer
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Example: Generation of Bandlimited Noise
Create, Import, and Name a Signal
You can import an existing signal into SPTool, or you can create a new signal 
and edit and name it in SPTool. In this step, you’ll create a new signal at the 
command line and then import it into SPTool.

1 At the command line, create a random signal by typing:

x = randn(5000,1);

2 Activate SPTool by typing:

sptool

The SPTool window is displayed.

3 Select Import... from the File menu:

The Import to SPTool window is displayed:

Notice that the variable x is displayed in the Workspace Contents list. (If 
it is not, click the From Workspace radio button to display the contents of 
the workspace.)

4 Name the signal and import it into SPTool:

a Make sure that Signal is selected in the Import As pop-up menu.

b Click in the Data field and type x.
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You can also move the variable x into the Data field by clicking on x in 
the Workspace Contents list and then clicking on the arrow to the left of 
the Data field.

c Click in the Sampling Frequency field and type 5000.

d Name the signal by clicking in the Name field and typing noise.

e Click OK.

The SPTool window is reactivated, and the signal noise[vector] is selected 
in the Signals list.

Design a Filter
You can import an existing filter into SPTool, or you can design and edit a new 
filter using the Filter Designer. In this step, you’ll create a default filter and 
customize it in the Filter Designer.

1 Click New Design in SPTool to activate the Filter Designer and generate a 
default filter.

The Filter Designer window is displayed with the default filter filt1.

2 Change the filter sampling frequency to 5000 by entering this value in the 
Sampling Frequency text box in the Filter Designer.

3 Specify the filter parameters shown at left:

a Make sure Equiripple FIR is selected in the Algorithm pop-up menu.

b Select bandpass from the Type pop-up menu.

c Set the passband edge frequencies by entering 750 for Fp1 and 1250 for 
Fp2.

d Set the stopband edge frequencies by entering 500 for Fs1 and 1500 for 
Fs2.

e Type .01 into the Rp field and 75 into the Rs field.

Rp sets the maximum passband ripple and Rs sets the stopband 
attenuation for the filter.

f Press the Apply button to compute the new filter.
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Example: Generation of Bandlimited Noise
When the new filter is computed, the magnitude response of the filter is 
displayed with a solid line in the main axes display area:

The resulting filter is an order 78 bandpass equiripple filter.
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Apply the Filter to a Signal
In this step, you apply the filter to the signal in SPTool. The new, filtered signal 
is automatically created in SPTool.

1 Activate SPTool from the Window menu in the Filter Designer.

2 Click to select the signal noise[vector] from the Signals list and click to 
select the filter (named filt1[design]) from the Filters list, as shown 
below:

3 Click Apply to apply the filter filt1 to the signal noise.

The Apply Filter dialog box is displayed.

4 Name the new signal by clicking in the Output Signal field and typing 
blnoise.

5 Click OK.

The filter is applied to the selected signal. The new, filtered signal 
blnoise[vector] is displayed in the Signals list.
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View and Play the Signals
You can view the time domain information of the signals using the Signal 
Browser. You can also play the signals, if your computer has audio output 
capabilities. In this step, you’ll display both signals in the Signal Browser and 
select and play first one signal and then the other.

1 Shift-click on the noise and blnoise signals in the Signals list of SPTool to 
select both signals.

2 Click View in the Signals panel.

The Signal Browser is activated and both signals are displayed in the main 
axes display area. Initially, the noise signal covers up the bandlimited 
blnoise signal, but you can see that both signals are displayed because the 
names of both signals are shown above the main axes display area:

3 Click-and-drag in the Selection pop-up menu to select the blnoise signal.

The main axes display area is redisplayed. Now you can see the blnoise 
signal superimposed on top of the noise signal. The signals are displayed in 
different colors in both the main axes display area and the panner. Notice 
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that the color of the line in the Selection display changes to correspond to 
the color of the signal that you’ve selected:

The signal that’s displayed in the Selection pop-up menu and in the 
Selection display is the active signal. When you select Play, or use the 
rulers, the active signal is the one that is played or measured.

4 To hear the active signal, select Play from the Options menu.

5 To hear the other signal, select it as in step 3 above and then select Play 
from the Options menu again. You can also select the signal by clicking on 
it in the main axes display area.
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Compare Spectra of Both Signals
You can get an idea of the frequency content of the two signals by displaying 
their power spectra using the Spectrum Viewer, as described below.

1 Reactivate SPTool by selecting it from the Window menu of the Signal 
Browser.

2 Click on the noise[vector] signal in the Signals list of SPTool to select it.

3 Click Create in the Spectra panel.

The Spectrum Viewer is activated, and a spectrum object (spect1) 
corresponding to the noise signal is created in the Spectra list. The 
spectrum is not computed or displayed yet.

4 Click Apply in the Spectrum Viewer to compute and display spect1. The 
spectrum of the noise signal is displayed in the main axes display area:

Notice that the spectrum’s signal identification information – including its 
name, its type, and its sampling frequency – is displayed above the 
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Parameters panel, and the spectrum’s name is displayed both above the 
main axes display area and in the Selection pop-up menu.

The spectrum estimate is within 2 or 3 dB of 0, so the noise has a fairly “flat” 
spectrum.

5 Reactivate SPTool by selecting it from the Window menu in the Spectrum 
Viewer.

6 Click on the blnoise signal in the Signals list of SPTool to select it.

7 Click Create in the Spectra panel.

The Spectrum Viewer is again activated, and a spectrum object (spect2) 
corresponding to the blnoise signal is created in the Spectra list. The 
spectrum is not computed or displayed yet.

8 Click Apply in the Spectrum Viewer to display spect2.

The spectrum of the blnoise signal is displayed in the main axes display 
area:
08



Example: Generation of Bandlimited Noise
The new spectrum’s signal identification information – including its name, 
its type, and its sampling frequency – is displayed above the Parameters 
panel, and the spectrum’s name is displayed both above the main axes 
display area and in the Selection pop-up menu.

This spectrum is flat between 750 and 1250 Hz and has 75 dB less power in 
the stopband regions of filt1.

9 Reactivate SPTool again, as in step 5 above.

10 Shift-click on spect1 and spect2 in the Spectra list to select them both.

11 Click View in the Spectra panel to reactivate the Spectrum Viewer and 
display both spectra together.
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12 To select one of the spectra for measuring or editing, use the Selection 
pop-up menu, or click on the spectrum in the main axes display area.

The color of the line in the Selection display changes to correspond to the 
color of the spectrum that you’ve selected.

The spectrum that’s displayed in the Selection pop-up menu and in the 
Selection display is the active spectrum. When you use the rulers or change 
parameters, the active spectrum is the one that is measured or modified.
10
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This chapter contains detailed descriptions of all Signal Processing Toolbox 
functions. It begins with a list of functions grouped by subject area and 
continues with the reference entries in alphabetical order. For more 
information, see the online MATLAB Function Reference.

Waveform Generation and Plotting

chirp Swept-frequency cosine generator.

diric Dirichlet or periodic sinc function.

gauspuls Gaussian-modulated sinusoidal pulse generator.

pulstran Pulse train generator.

rectpuls Sampled aperiodic rectangle generator.

sawtooth Sawtooth or triangle wave generator.

sinc Sinc function.

square Square wave generator.

strips Strip plot.

tripuls Sampled aperiodic triangle generator.

Filter Analysis and Implementation

abs Absolute value (magnitude).

angle Phase angle.

conv Convolution and polynomial multiplication.

conv2 Two-dimensional convolution.

fftfilt FFT-based FIR filtering using the overlap-add method.

filter Filter data with a recursive (IIR) or nonrecursive (FIR) 
filter.



filter2 Two-dimensional digital filtering.

filtfilt Zero-phase digital filtering.

filtic Find initial conditions for a transposed direct form II filter 
implementation.

freqs Frequency response of analog filters.

freqspace Frequency spacing for frequency response.

freqz Frequency response of digital filters.

grpdelay Average filter delay (group delay).

impz Impulse response of digital filters.

latcfilt Lattice and lattice-ladder filter implementation.

unwrap Unwrap phase angles.

zplane Zero-pole plot.

Linear System Transformations

convmtx Convolution matrix.

latc2tf Lattice filter to transfer function conversion.

poly2rc Reflection coefficients from polynomial coefficients.

rc2poly Polynomial coefficients from reflection coefficients.

residuez z-transform partial-fraction expansion.

sos2ss Second-order section to state-space conversion.

sos2tf Second-order section to transfer function conversion.

sos2zp Second-order section to zero-pole-gain conversion.

Filter Analysis and Implementation
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ss2sos State-space to second-order section conversion.

ss2tf State-space to transfer function conversion.

ss2zp State-space to zero-pole-gain conversion.

tf2latc Transfer function to lattice filter conversion.

tf2ss Transfer function to state-space conversion.

tf2zp Transfer function to zero-pole-gain conversion.

zp2sos Zero-pole-gain to second-order section conversion.

zp2ss Zero-pole-gain to state-space conversion.

zp2tf Zero-pole-gain to transfer function conversion.

IIR Filter Design—Classical and Direct

besself Bessel analog filter design.

butter Butterworth analog and digital filter design.

cheby1 Chebyshev type I filter design (passband ripple).

cheby2 Chebyshev type II filter design (stopband ripple).

ellip Elliptic (Cauer) filter design.

maxflat Generalized digital Butterworth filter design.

yulewalk Recursive digital filter design.

Linear System Transformations



IIR Filter Order Selection

buttord Butterworth filter order selection.

cheb1ord Chebyshev type I filter order selection.

cheb2ord Chebyshev type II filter order selection.

ellipord Elliptic filter order selection.

FIR Filter Design

cremez Complex and nonlinear-phase equiripple FIR filter design

fir1 Window-based finite impulse response filter design—
standard response.

fir2 Window-based finite impulse response filter design—
arbitrary response.

fircls Constrained least square FIR filter design for multiband 
filters.

fircls1 Constrained least square filter design for lowpass and 
highpass linear phase FIR filters.

firls Least square linear-phase FIR filter design.

firrcos Raised cosine FIR filter design.

intfilt Interpolation FIR filter design.

kaiserord Estimate parameters for an FIR filter design with Kaiser 
window.

remez Parks-McClellan optimal FIR filter design.

remezord Parks-McClellan optimal FIR filter order estimation.
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Transforms

czt Chirp z-transform.

dct Discrete cosine transform (DCT).

dftmtx Discrete Fourier transform matrix.

fft One-dimensional fast Fourier transform.

fft2 Two-dimensional fast Fourier transform.

fftshift Rearrange the outputs of the FFT functions.

hilbert Hilbert transform.

idct Inverse discrete cosine transform.

ifft One-dimensional inverse fast Fourier transform.

ifft2 Two-dimensional inverse fast Fourier transform.

Statistical Signal Processing

cohere Estimate magnitude squared coherence function between 
two signals.

corrcoef Correlation coefficient matrix.

cov Covariance matrix.

csd Estimate the cross spectral density (CSD) of two signals.

pburg Power spectrum estimate using the Burg method.

pmtm Power spectrum estimate using the multitaper method 
(MTM).

pmusic Power spectrum estimate using MUSIC eigenvector 
method.



psd Estimate the power spectral density (PSD) of a signal using 
Welch’s method.

pyulear Power spectrum estimate using Yule-Walker AR method.

tfe Transfer function estimate from input and output.

xcorr Cross-correlation function estimate.

xcorr2 Two-dimensional cross-correlation.

xcov Cross-covariance function estimate (equal to 
mean-removed cross-correlation).

Windows

bartlett Bartlett window.

blackman Blackman window.

boxcar Rectangular window.

chebwin Chebyshev window.

hamming Hamming window.

hanning Hanning window.

kaiser Kaiser window.

triang Triangular window.

Statistical Signal Processing
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Parametric Modeling

invfreqs Continuous-time (analog) filter identification from 
frequency data.

invfreqz Discrete-time filter identification from frequency data.

levinson Levinson-Durbin recursion.

lpc Linear prediction coefficients.

prony Prony’s method for time domain IIR filter design.

stmcb Linear model using Steiglitz-McBride iteration.

Specialized Operations

cceps Complex cepstral analysis.

cplxpair Group complex numbers into complex conjugate pairs.

decimate Decrease the sampling rate for a sequence (decimation).

deconv Deconvolution and polynomial division.

demod Demodulation for communications simulation.

detrend Remove linear trends.

dpss Discrete prolate spheroidal sequences (Slepian sequences).

dpssclear Remove discrete prolate spheroidal sequences from 
database.

dpssdir Discrete prolate spheroidal sequences database directory.

dpssload Load discrete prolate spheroidal sequences from database.

dpsssave Save discrete prolate spheroidal sequences in database.

icceps Inverse complex cepstrum.



interp Increase sampling rate by an integer factor (interpolation).

medfilt1 One-dimensional median filtering.

modulate Modulation for communications simulation.

polystab Stabilize polynomial.

rceps Real cepstrum and minimum phase reconstruction.

resample Change sampling rate by any factor.

specgram Time-dependent frequency analysis (spectrogram).

upfirdn Upsample, apply an FIR filter, and downsample.

vco Voltage controlled oscillator.

Analog Prototype Design

besselap Bessel analog lowpass filter prototype.

buttap Butterworth analog lowpass filter prototype.

cheb1ap Chebyshev type I analog lowpass filter prototype.

cheb2ap Chebyshev type II analog lowpass filter prototype.

ellipap Elliptic analog lowpass filter prototype.

Specialized Operations
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Frequency Translation

lp2bp Lowpass to bandpass analog filter transformation.

lp2bs Lowpass to bandstop analog filter transformation.

lp2hp Lowpass to highpass analog filter transformation.

lp2lp Lowpass to lowpass analog filter transformation.

Filter Discretization

bilinear Map variables using bilinear transformation.

impinvar Impulse invariance method of analog-to-digital filter 
conversion.

Interactive Tools

sptool Interactive digital signal processing tool (SPTool).
0



abs
6absPurpose Absolute value (magnitude).

Syntax y = abs(x)

Description y = abs(x) returns the absolute value of the elements of x. If x is complex, abs 
returns the complex modulus (magnitude):

abs(x) = sqrt(real(x).^2 + imag(x).^2)

If x is a MATLAB string, abs returns the numeric values of the ASCII 
characters in the string. The display format of the string changes; the internal 
representation does not.

This function is part of the standard MATLAB environment.

Example Calculate the magnitude of the FFT of a sequence:

t = (0:99)/100; % time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % signal
y = fft(x);  % compute DFT of x
m = abs(y); % magnitude

Plot the magnitude:

f = (0:length(y)–1)'/length(y)*100; % frequency vector
plot(f,m)

See Also angle Phase angle.
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6anglePurpose Phase angle.

Syntax p = angle(h)

Description p = angle(h) returns the phase angles, in radians, of the elements of complex 
vector or array h. The phase angles lie between -π and π.

For complex sequence h = x + iy = meip, the magnitude and phase are given by

m = abs(h)
p = angle(h)

To convert back to the original h from its magnitude and phase:

i = sqrt(–1)
h = m.*exp(i*p)

This function is part of the standard MATLAB environment.

Example Calculate the phase of the FFT of a sequence:

t = (0:99)/100; % time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % signal
y = fft(x); % compute DFT of x
p = unwrap(angle(y));  % phase

Plot the phase:

f = (0:length(y)–1)'/length(y)*100;  % frequency vector
plot(f,p)

Algorithm angle can be expressed as:

angle(x) = imag(log(x)) = atan2(imag(x),real(x))

See Also  abs Absolute value (magnitude).
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bartlett
6bartlettPurpose Bartlett window.

Syntax w = bartlett(n)

Description w = bartlett(n) returns an n-point Bartlett window in the column vector w. 
The coefficients of a Bartlett window are

For n odd

For n even

The Bartlett window is very similar to a triangular window as returned by the 
triang function. The Bartlett window always ends with zeros at samples 1 and 
n, however, while the triangular window is nonzero at those points. For n odd, 
the center n–2 points of bartlett(n) are equivalent to triang(n–2).

See Also
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blackman Blackman window.

boxcar Rectangular window.

chebwin Chebyshev window.

hamming Hamming window.

hanning Hanning window.

kaiser Kaiser window.

triang Triangular window.
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References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, 1989.
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6besselapPurpose  Bessel analog lowpass filter prototype.

Syntax [z,p,k] = besselap(n)

Description [z,p,k] = besselap(n) returns the zeros, poles, and gain of an order n Bessel 
analog lowpass filter prototype. It returns the poles in the length n column 
vector p and the gain in scalar k. z is an empty matrix, because there are no 
zeros. n must be less than or equal to 25. The transfer function is

besselap normalizes the poles and gain so that at low frequency and high 
frequency the Bessel prototype is asymptotically equivalent to the Butterworth 
prototype of the same order [1]. The magnitude of the filter is less than
sqrt(1/2) at the unity cutoff frequency Ωc = 1. 

Analog Bessel filters are characterized by a group delay that is maximally flat 
at zero frequency and almost constant throughout the passband. The group 
delay at zero frequency is

Algorithm besselap finds the filter roots from a look-up table constructed using the 
Symbolic Math Toolbox.

See Also

Also see the Symbolic Math Toolbox User’s Guide.

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 228-230.
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besself Bessel analog filter design.

buttap Butterworth analog lowpass filter prototype.

cheb1ap Chebyshev type I analog lowpass filter prototype.

cheb2ap Chebyshev type II analog lowpass filter prototype.

ellipap Elliptic analog lowpass filter prototype.
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6besselfPurpose Bessel analog filter design.

Syntax [b,a] = besself(n,Wn)
[b,a] = besself(n,Wn,'ftype')
[z,p,k] = besself(...)
[A,B,C,D] = besself(...)

Description besself designs lowpass, bandpass, highpass, and bandstop analog Bessel 
filters. Analog Bessel filters are characterized by almost constant group delay 
across the entire passband, thus preserving the wave shape of filtered signals 
in the passband. Digital Bessel filters do not retain this quality, and besself 
therefore does not support the design of digital Bessel filters.

[b,a] = besself(n,Wn) designs an order n lowpass analog filter with cutoff 
frequency Wn. It returns the filter coefficients in the length n+1 row vectors b 
and a, with coefficients in descending powers of s:

Cutoff frequency is the frequency at which the magnitude response of the filter 
begins to decrease significantly. For besself, the cutoff frequency Wn must be 
greater than 0. The magnitude response of a Bessel filter designed by besself 
is always less than sqrt(1/2) at the cutoff frequency, and it decreases as the 
order n increases.

If Wn is a two-element vector, Wn = [w1 w2] with w1 < w2, besself(n,Wn) 
returns an order 2*n bandpass analog filter with passband w1 < ω < w2.

[b,a] = besself(n,Wn,'ftype') designs a highpass or bandstop filter, 
where ftype is

• high for a highpass analog filter with cutoff frequency Wn

• stop for an order 2*n bandstop analog filter if Wn is a two-element vector, 
Wn = [w1 w2]

The stopband is w1 < ω < w2.
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With different numbers of output arguments, besself directly obtains other 
realizations of the analog filter. To obtain zero-pole-gain form, use three output 
arguments:

[z,p,k] = besself(n,Wn) or

[z,p,k] = besself(n,Wn,'ftype')

besself returns the zeros and poles in length n or 2*n column vectors z and p 
and the gain in the scalar k. 

To obtain state-space form, use four output arguments:

[A,B,C,D] = besself(n,Wn) or

[A,B,C,D] = besself(n,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

ẋ Ax Bu

y Cx Du

= +
= +
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Example Design a fifth-order analog lowpass Bessel filter that suppresses frequencies 
greater than 10,000 rad/sec and plot the frequency response of the filter using 
freqs:

[b,a] = besself(5,10000);
freqs(b,a)  % plot frequency response

Limitations Lowpass Bessel filters have a monotonically decreasing magnitude response, 
as do lowpass Butterworth filters. Compared to the Butterworth, Chebyshev, 
and elliptic filters, the Bessel filter has the slowest rolloff and requires the 
highest order to meet an attenuation specification.

For high order filters, the state-space form is the most numerically accurate, 
followed by the zero-pole-gain form. The transfer function coefficient form is 
the least accurate; numerical problems can arise for filter orders as low as 15.
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Algorithm besself performs a four-step algorithm:

1 It finds lowpass analog prototype poles, zeros, and gain using the besselap 
function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter into a bandpass, highpass, or bandstop filter 
with desired cutoff frequencies, using a state-space transformation.

4 It converts the state-space filter back to transfer function or zero-pole-gain 
form, as required.

See Also besselap Bessel analog lowpass filter prototype.

butter Butterworth analog and digital filter design.

cheby1 Chebyshev type I filter design (passband ripple).

cheby2 Chebyshev type II filter design (stopband ripple).

ellip Elliptic (Cauer) filter design.
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6bilinearPurpose Map variables using bilinear transformation.

Syntax [zd,pd,kd] = bilinear(z,p,k,Fs)
[zd,pd,kd] = bilinear(z,p,k,Fs,Fp)
[numd,dend] = bilinear(num,den,Fs)
[numd,dend] = bilinear(num,den,Fs,Fp)
[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,Fs)
[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,Fs,Fp)

Description The bilinear transformation is a mathematical mapping of variables. In digital 
filtering, it is a standard method of mapping the s or analog plane into the z or 
digital plane. It transforms analog filters, designed using classical filter design 
techniques, into their discrete equivalents.

The bilinear transformation maps the s-plane into the z-plane by

This transformation maps the jΩ axis (from Ω = -∞ to +∞) repeatedly around 
the unit circle (exp(jω), from ω = −π to π) by

bilinear can accept an optional parameter Fp that specifies prewarping. Fp, in 
Hertz, indicates a “match” frequency, that is, a frequency for which the 
frequency responses before and after mapping match exactly. In prewarped 
mode, the bilinear transformation maps the s-plane into the z-plane with

With the prewarping option, bilinear maps the jΩ axis (from Ω = -∞ to +∞) 
repeatedly around the unit circle (exp(jω), from ω = −π to π) by

H z H s s f
z

zs
( ) ( )= = −

+
2

1

1

ω =






−2
2

1tan
Ω
fs

H z H s s
f z

z
p
f p
fs

( ) ( )

tan

( )

( )
= =







−
+

2 1

1

π

π

ω
π

π
=























−2
2

1tan
tanΩ

f
f

p

p

s

f

6-20



bilinear
In prewarped mode, bilinear matches the frequency 2πfp (in radians per 
second) in the s-plane to the normalized frequency 2πfp/fs (in radians per 
second) in the z-plane.

The bilinear function works with three different linear system 
representations: zero-pole-gain, transfer function, and state-space form.

Zero-Pole-Gain

[zd,pd,kd] = bilinear(z,p,k,Fs) and 

[zd,pd,kd] = bilinear(z,p,k,Fs,Fp) convert the s-domain transfer 
function specified by z, p, and k to a discrete equivalent. Inputs z and p are 
column vectors containing the zeros and poles, and k is a scalar gain. Fs is the 
sampling frequency in Hertz. bilinear returns the discrete equivalent in 
column vectors zd and pd and scalar kd. Fp is the optional match frequency, in 
Hertz, for prewarping.

Transfer Function

[numd,dend] = bilinear(num,den,Fs) and

[numd,dend] = bilinear(num,den,Fs,Fp) convert an s-domain transfer 
function given by num and den to a discrete equivalent. Row vectors num and den 
specify the coefficients of the numerator and denominator, respectively, in 
descending powers of s 

Fs is the sampling frequency in Hertz. bilinear returns the discrete 
equivalent in row vectors numd and dend in descending powers of z (ascending 
powers of z-1). Fp is the optional match frequency, in Hertz, for prewarping.
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State-Space

[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,Fs) and

[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,Fs,Fp) convert the continuous-time 
state-space system in matrices A, B, C, D, 

to the discrete-time system

Fs is the sampling frequency in Hertz. bilinear returns the discrete 
equivalent in matrices Ad, Bd, Cd, Dd. Fp is the optional match frequency, in 
Hertz, for prewarping.

Algorithm bilinear uses one of two algorithms, depending on the format of the input 
linear system you supply. One algorithm works on the zero-pole-gain format 
and the other on the state-space format. For transfer function representations, 
bilinear converts to state-space form, performs the transformation, and 
converts the resulting state-space system back to transfer function form.

Zero-Pole-Gain Algorithm
For a system in zero-pole-gain form, bilinear performs four steps:

1 If Fp is present, k = 2*pi*Fp/tan(pi*Fp/Fs); otherwise k = 2*Fs.

2 It strips any zeros at plus or minus infinity using
 z = z(find(finite(z)));

3 It transforms the zeros, poles, and gain using
 pd = (1+p/k)./(1–p/k);
 zd = (1+z/k)./(1–z/k);
 kd = real(k*prod(fs–z)./prod(fs–p));

4 It adds extra zeros at -1 so the resulting system has equivalent numerator 
and denominator order.

ẋ Ax Bu+=

y Cx Du+=

x n 1+[ ] Adx n[ ] Bdu n[ ]+=

y n[ ] Cdx n[ ] Ddu n[ ]+=
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State-Space Algorithm
For a system in state-space form, bilinear performs two steps:

1 If Fp is present, k = 2*pi*Fp/tan(pi*Fp/Fs); else k = 2*Fs.

2 It computes Ad, Bd, Cd, and Dd in terms of A, B, C, and D using

bilinear implements these relations using conventional MATLAB 
statements. The scalar r is arbitrary; bilinear uses sqrt(2/k) to ensure good 
quantization noise properties in the resulting system.

Diagnostics bilinear requires that the numerator order be no greater than the 
denominator order. If this is not the case, bilinear displays:

Numerator cannot be higher order than denominator.

For bilinear to distinguish between the zero-pole-gain and transfer function 
linear system formats, the first two input parameters must be vectors with the 
same orientation in these cases. If this is not the case, bilinear displays:

First two arguments must have the same orientation.

See Also
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impinvar Impulse invariance method of analog-to-digital filter 
conversion.

lp2bp Lowpass to bandpass analog filter transformation.

lp2bs Lowpass to bandstop analog filter transformation.

lp2hp Lowpass to highpass analog filter transformation.

lp2lp Lowpass to lowpass analog filter transformation.
6-23



bilinear
References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Pgs. 209-213.

[2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, 1989. Pgs. 415-430. 
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6blackmanPurpose Blackman window.

Syntax w = blackman(n)
w = blackman(n,sflag)

Description w = blackman(n) returns the n-point symmetrically sampled Blackman 
window in the column vector w. n should be a nonnegative integer. The 
equation for a Blackman window is

Blackman windows have slightly wider central lobes and less sideband leakage 
than equivalent length Hamming and Hanning windows.

w = blackman(n,sflag) returns an n-point Blackman window using the 
window sampling specified by sflag, which can be either 'periodic' or 
'symmetric' (the default). When 'periodic' is specified, blackman computes 
a length n+1 window and returns the first n points.

Algorithm w = (0.42 – 0.5*cos(2*pi*(0:N–1)/(N–1)) + ...
0.08*cos(4*pi*(0:N–1)/(N–1)))';

Diagnostics An error message is displayed when incorrect arguments are used:

Order cannot be less than zero.
Sampling must be either 'symmetric' or 'periodic'.

A warning message is displayed for noninteger n:

Warning: Rounding order to nearest integer.
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See Also

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, 1989.

bartlett Bartlett window.

boxcar Rectangular window.

chebwin Chebyshev window.

hamming Hamming window.

hanning Hanning window.

kaiser Kaiser window.

triang Triangular window.
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boxcar
6boxcarPurpose Rectangular window.

Syntax w = boxcar(n)

Description w = boxcar(n) returns a rectangular window of length n in the column vector 
w. This function is provided for completeness; a rectangular window is 
equivalent to no window at all.

Algorithm w = ones(n,1);

See Also

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, 1989.

bartlett Bartlett window.

blackman Blackman window.

chebwin Chebyshev window.

hamming Hamming window.

hanning Hanning window.

kaiser Kaiser window.

triang Triangular window.
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6buttapPurpose Butterworth analog lowpass filter prototype.

Syntax [z,p,k] = buttap(n)

Description [z,p,k] = buttap(n) returns the zeros, poles, and gain of an order n Butter-
worth analog lowpass filter prototype. It returns the poles in the length n 
column vector p and the gain in scalar k. z is an empty matrix, because there 
are no zeros. The transfer function is

Butterworth filters are characterized by a magnitude response that is 
maximally flat in the passband and monotonic overall. In the lowpass case, the 
first 2n–1 derivatives of the squared magnitude response are zero at ω = 0. The 
squared magnitude response function is

corresponding to a transfer function with poles equally spaced around a circle 
in the left half plane. The magnitude response at the cutoff frequency ω0 is 
always 1/sqrt(2), regardless of the filter order. buttap sets ω0 to 1 for a 
normalized result.

Algorithm z = [];
p = exp(sqrt(–1)*(pi*(1:2:2*n–1)/(2*n)+pi/2)).';
k = real(prod(–p));

See Also

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Chapter 7.
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besselap Bessel analog lowpass filter prototype.

butter Butterworth analog and digital filter design.

cheb1ap Chebyshev type I analog lowpass filter prototype.

cheb2ap Chebyshev type II analog lowpass filter prototype.

ellipap Elliptic analog lowpass filter prototype.
6-28



butter
6butterPurpose Butterworth analog and digital filter design.

Syntax [b,a] = butter(n,Wn)
[b,a] = butter(n,Wn,'ftype')
[b,a] = butter(n,Wn,'s')
[b,a] = butter(n,Wn,'ftype','s')
[z,p,k] = butter(...)
[A,B,C,D] = butter(...)

Description butter designs lowpass, bandpass, highpass, and bandstop digital and analog 
Butterworth filters. Butterworth filters are characterized by a magnitude 
response that is maximally flat in the passband and monotonic overall.

Butterworth filters sacrifice rolloff steepness for monotonicity in the pass- and 
stopbands. Unless the smoothness of the Butterworth filter is needed, an 
elliptic or Chebyshev filter can generally provide steeper rolloff characteristics 
with a lower filter order.

Digital Domain

[b,a] = butter(n,Wn) designs an order n lowpass digital Butterworth filter 
with cutoff frequency Wn. It returns the filter coefficients in length n + 1 row 
vectors b and a, with coefficients in descending powers of z:

Cutoff frequency is that frequency where the magnitude response of the filter 
is sqrt(1/2). For butter, the cutoff frequency Wn must be a number between 0 
and 1, where 1 corresponds to half the sampling frequency (the Nyquist 
frequency).

If Wn is a two-element vector, Wn = [w1 w2], butter returns an order 2*n digital 
bandpass filter with passband w1 <  < w2.
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[b,a] = butter(n,Wn,'ftype') designs a highpass or bandstop filter, where 
ftype is

• high for a highpass digital filter with cutoff frequency Wn

• stop for an order 2*n bandstop digital filter if Wn is a two-element vector, 
Wn = [w1 w2]

The stopband is w1 < ω < w2.

With different numbers of output arguments, butter directly obtains other 
realizations of the filter. To obtain zero-pole-gain form, use three output 
arguments:

[z,p,k] = butter(n,Wn) or

[z,p,k] = butter(n,Wn,'ftype') 

butter returns the zeros and poles in length n column vectors z and p, and the 
gain in the scalar k.

To obtain state-space form, use four output arguments:

[A,B,C,D] = butter(n,Wn) or

[A,B,C,D] = butter(n,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = butter(n,Wn,'s') designs an order n lowpass analog Butterworth 
filter with cutoff frequency Wn. It returns the filter coefficients in the length 
n + 1 row vectors b and a, in descending powers of s:

butter’s cutoff frequency Wn must be greater than 0.
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butter
If Wn is a two-element vector with w1 < w2, butter(n,Wn,'s') returns an order 
2*n bandpass analog filter with passband w1 < ω < w2.

[b,a] = butter(n,Wn,'ftype','s') designs a highpass or bandstop filter, 
where ftype is

• high for a highpass analog filter with cutoff frequency Wn

• stop for an order 2*n bandstop analog filter if Wn is a two-element vector, 
Wn = [w1 w2]

The stopband is w1 < ω < w2.

With different numbers of output arguments, butter directly obtains other 
realizations of the analog filter. To obtain zero-pole-gain form, use three output 
arguments:

[z,p,k] = butter(n,Wn,'s') or

[z,p,k] = butter(n,Wn,'ftype','s') returns the zeros and poles in length 
n or 2*n column vectors z and p and the gain in the scalar k.

To obtain state-space form, use four output arguments:

[A,B,C,D] = butter(n,Wn,'s') or

[A,B,C,D] = butter(n,Wn,'ftype','s') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Examples For data sampled at 1000 Hz, design a 9th-order highpass Butterworth filter 
with cutoff frequency of 300 Hz:

[b,a] = butter(9,300/500,'high')

ẋ Ax Bu

y Cx Du

= +
= +
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butter
The filter’s frequency response is

freqz(b,a,128,1000)

Design a 10th-order bandpass Butterworth filter with a passband from 100 to 
200 Hz and plot its impulse response, or unit sample response:

n = 5; Wn = [100 200]/500;
[b,a] = butter(n,Wn);
[y,t] = impz(b,a,101);
stem(t,y)
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butter
Limitations For high order filters, the state-space form is the most numerically accurate, 
followed by the zero-pole-gain form. The transfer function coefficient form is 
the least accurate; numerical problems can arise for filter orders as low as 15.

Algorithm butter uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the buttap 
function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter into a bandpass, highpass, or bandstop filter 
with desired cutoff frequencies, using a state-space transformation.

4 For digital filter design, butter uses bilinear to convert the analog filter 
into a digital filter through a bilinear transformation with frequency 
prewarping. Careful frequency adjustment guarantees that the analog 
filters and the digital filters will have the same frequency response 
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain 
form, as required.

See Also besself Bessel analog filter design.

buttap Butterworth analog lowpass filter prototype.

buttord Butterworth filter order selection.

cheby1 Chebyshev type I filter design (passband ripple).

cheby2 Chebyshev type II filter design (stopband ripple).

ellip Elliptic (Cauer) filter design.

maxflat Generalized digital Butterworth filter design.
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6buttordPurpose Butterworth filter order selection.

Syntax [n,Wn] = buttord(Wp,Ws,Rp,Rs)
[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s')

Description buttord selects the minimum order digital or analog Butterworth filter 
required to meet a set of filter design specifications:

Digital Domain

[n,Wn] = buttord(Wp,Ws,Rp,Rs) returns the order n of the lowest order 
digital Butterworth filter that loses no more than Rp dB in the passband and 
has at least Rs dB of attenuation in the stopband. The passband runs from 0 to 
Wp and the stopband runs from Ws to 1, the Nyquist frequency. buttord also 
returns Wn, the Butterworth cutoff frequency that allows butter to achieve the 
given specifications (the “3 dB” frequency).

Use buttord for highpass, bandpass, and bandstop filters. For highpass filters, 
Wp is greater than Ws. For bandpass and bandstop filters, Wp and Ws are 
two-element vectors that specify the corner frequencies at both edges of the 
filter, lower frequency edge first. For the band filters, buttord returns Wn as a 
two-element row vector for input to butter.

If filter specifications call for a bandpass or bandstop filter with unequal ripple 
in each of the passbands or stopbands, design the filter as separate lowpass and 
highpass sections and cascade the two filters together.

Wp Passband corner frequency. Wp, the cutoff frequency, has a value 
between 0 and 1, where 1 corresponds to half the sampling 
frequency (the Nyquist frequency).

Ws Stopband corner frequency. Ws is in the same units as Wp; it has 
a value between 0 and 1, where 1 corresponds to half the 
sampling frequency (the Nyquist frequency).

Rp Passband ripple, in decibels. This value is the maximum 
permissible passband loss in decibels. The passband is 0 < w < Wp.

Rs Stopband attenuation, in decibels. This value is the number of 
decibels the stopband is down from the passband. The stopband 
is Ws < w < 1.
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Analog Domain

[n,Wn] = buttord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff 
frequencies Wn for an analog filter. In this case the frequencies in Wp and Ws are 
in radians per second and may be greater than 1.

Use buttord for highpass, bandpass, and bandstop filters, as described under 
“Digital Domain.” 

Examples For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of 
attenuation from 0 to 100 Hz, and attenuation at least 15 dB from 150 Hz to 
the Nyquist frequency. Plot the filter’s frequency response:

Wp = 100/500; Ws = 150/500;
[n,Wn] = buttord(Wp,Ws,3,15)

n =
     4

Wn =
    0.2042

[b,a] = butter(n,Wn);
freqz(b,a,512,1000)
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buttord
Next design a bandpass filter with passband of 100 Hz to 200 Hz, less than 
3 dB of attenuation at the passband corners, and attenuation down 30 dB by 
50 Hz out on both sides of the passband:

Wp = [100 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 30;
[n,Wn] = buttord(Wp,Ws,Rp,Rs); [b,a] = butter(n,Wn);
freqz(b,a,128,1000)

Algorithm buttord’s order prediction formula is described in [1]. It operates in the analog 
domain for both analog and digital cases. For the digital case, it converts the 
frequency parameters to the s-domain before estimating the order and natural 
frequency, then converts back to the z-domain.

buttord initially develops a lowpass filter prototype by transforming the 
passband frequencies of the desired filter to 1 rad/sec (for low- and highpass 
filters) and to -1 and 1 rad/sec (for bandpass and bandstop filters). It then 
computes the minimum order required for a lowpass filter to meet the stopband 
specification.
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See Also

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 227.

butter Butterworth analog and digital filter design.

cheb1ord Chebyshev type I filter order selection.

cheb2ord Chebyshev type II filter order selection.

ellipord Elliptic filter order selection.

kaiserord Estimate parameters for an FIR filter design with 
Kaiser window.
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cceps
6ccepsPurpose Complex cepstral analysis.

Syntax xhat = cceps(x)
[xhat,nd] = cceps(x)
[xhat,nd,xhat1] = cceps(x)
[...] = cceps(x,n)

Description Cepstral analysis is a nonlinear signal processing technique that is applied 
most commonly in speech processing and homomorphic filtering [1].

xhat = cceps(x) returns the complex cepstrum of the (assumed real) 
sequence x. The input is altered, by the application of a linear phase term, to 
have no phase discontinuity at ±π radians. That is, it is circularly shifted (after 
zero padding) by some samples, if necessary, to have zero phase at π radians.

[xhat,nd] = cceps(x) returns the number of samples nd of (circular) delay 
added to x prior to finding the complex cepstrum.

[xhat,nd,xhat1] = cceps(x) returns a second complex cepstrum, computed 
using an alternate rooting algorithm, in xhat1. The alternate method 
([1] p.795) is useful for short sequences that can be rooted and do not have zeros 
on the unit circle. For these signals, xhat1 can provide a verification of xhat.

[...] = cceps(x,n) zero pads x to length n and returns the length n complex 
cepstrum of x.

Algorithm cceps, in its basic form, is an M-file implementation of algorithm 7.1 in [2]. A 
lengthy Fortran program reduces to three lines of MATLAB code:

h = fft(x);
logh = log(abs(h)) + sqrt(–1)*rcunwrap(angle(h));
y = real(ifft(logh));

rcunwrap is a special version of unwrap that subtracts a straight line from the 
phase.
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See Also

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, 1989.

[2] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John 
Wiley & Sons, 1979. 

icceps Inverse complex cepstrum.

hilbert Hilbert transform.

rceps Real cepstrum and minimum phase reconstruction.

unwrap Unwrap phase angles.
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cheb1ap
6cheb1apPurpose Chebyshev type I analog lowpass filter prototype.

Syntax [z,p,k] = cheb1ap(n,Rp)

Description [z,p,k] = cheb1ap(n,Rp) returns the zeros, poles, and gain of an order n 
Chebyshev type I analog lowpass filter prototype with Rp dB of ripple in the 
passband. It returns the poles in the length n column vector p and the gain in 
scalar k. z is an empty matrix, because there are no zeros. The transfer function 
is

Chebyshev type I filters are equiripple in the passband and monotonic in the 
stopband. The poles are evenly spaced about an ellipse in the left half plane. 
The Chebyshev type I cutoff frequency  is set to 1.0 for a normalized result. 
This is the frequency at which the passband ends and the filter has magnitude 
response of 10-Rp/20.

See Also

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Chapter 7.
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buttap Butterworth analog and digital filter design.
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cheby1 Chebyshev type I filter design (passband ripple).

ellipap Elliptic analog lowpass filter prototype.
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cheb1ord
6cheb1ordPurpose Chebyshev type I filter order selection.

Syntax [n,Wn] = cheb1ord(Wp,Ws,Rp,Rs)
[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs,'s')

Description cheb1ord selects the minimum order digital or analog Chebyshev type I filter 
required to meet a set of filter design specifications:

Digital Domain

[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs) returns the order n of the lowest order 
Chebyshev filter that loses no more than Rp dB in the passband and has at 
least Rs dB of attenuation in the stopband. The passband runs from 0 to Wp and 
the stopband runs from Ws to 1, the Nyquist frequency. cheb1ord also returns 
Wn, the Chebyshev type I cutoff frequency that allows cheby1 to achieve the 
given specifications. 

Use cheb1ord for lowpass, highpass, bandpass, and bandstop filters. For 
highpass filters, Wp > Ws. For bandpass and bandstop filters, Wp and Ws are 
two-element vectors that specify the corner frequencies at both edges of the 
filter, lower frequency edge first. For the band filters, cheb1ord returns Wn as 
a two-element row vector for input to cheby1.

If filter specifications call for a bandpass or bandstop filter with unequal ripple 
in each of the passbands or stopbands, design the filter as separate lowpass and 
highpass sections and cascade the two filters together.

Wp Passband corner frequency. Wp, the cutoff frequency, has a value 
between 0 and 1, where 1 corresponds to half the sampling 
frequency (the Nyquist frequency).

Ws Stopband corner frequency. Ws is in the same units as Wp; it has 
a value between 0 and 1, where 1 corresponds to half the 
sampling frequency (the Nyquist frequency).

Rp Passband ripple, in decibels. This value is the maximum 
permissible passband loss in decibels. The passband is 0 < w < Wp.

Rs Stopband attenuation, in decibels. This value is the number of 
decibels the stopband is down from the passband. The stopband 
is Ws < w < 1.
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Analog Domain

[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff 
frequencies Wn for an analog filter. In this case the frequencies in Wp and Ws are 
in radians per second and may be greater than 1.

Use cheb1ord for lowpass, highpass, bandpass, and bandstop filters, as 
described under “Digital Domain.” 

Examples For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of 
attenuation from 0 to 100 Hz and attenuation at least 15 dB from 150 Hz to the 
Nyquist frequency:

Wp = 100/500; Ws = 150/500;
Rp = 3; Rs = 15;
[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs)

n = 
     3

Wn =
    0.2000

[b,a] = cheby1(n,Rp,Wn);
freqz(b,a,512,1000)
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cheb1ord
Next design a bandpass filter with a passband of 100 Hz to 200 Hz, less than 
3 dB of attenuation throughout the passband, and 30 dB stopbands 50 Hz out 
on both sides of the passband:

Wp = [100 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 30;
[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs)

n =
     4

Wn =
    0.2000    0.4000

[b,a] = cheby1(n,Rp,Wn);
freqz(b,a,512,1000)

Algorithm cheb1ord uses the Chebyshev lowpass filter order prediction formula described 
in [1]. The function performs its calculations in the analog domain for both 
analog and digital cases. For the digital case, it converts the frequency 
parameters to the s-domain before the order and natural frequency estimation 
process, then converts them back to the z-domain.
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cheb1ord initially develops a lowpass filter prototype by transforming the 
passband frequencies of the desired filter to 1 rad/sec (for low- or highpass 
filters) or to -1 and 1 rad/sec (for bandpass or bandstop filters). It then 
computes the minimum order required for a lowpass filter to meet the stopband 
specification.

See Also

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

buttord Butterworth filter order selection.

cheby1 Chebyshev type I filter design (passband ripple).

cheb2ord Chebyshev type II filter order selection.

ellipord Elliptic filter order selection.

kaiserord Estimate parameters for an FIR filter design with 
Kaiser window.
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6cheb2apPurpose Chebyshev type II analog lowpass filter prototype.

Syntax [z,p,k] = cheb2ap(n,Rs)

Description [z,p,k] = cheb2ap(n,Rs) finds the zeros, poles, and gain of an order n 
Chebyshev type II analog lowpass filter prototype with stopband ripple Rs dB 
down from the passband peak value. cheb2ap returns the zeros and poles in 
length n column vectors z and p and the gain in scalar k. If n is odd, z is length 
n–1. The transfer function is

Chebyshev type II filters are monotonic in the passband and equiripple in the 
stopband. The pole locations are the inverse of the pole locations of cheb1ap, 
whose poles are evenly spaced about an ellipse in the left half plane. The 
Chebyshev type II cutoff frequency ω0 is set to 1 for a normalized result. This 
is the frequency at which the stopband begins and the filter has magnitude 
response of 10-Rs/20.

Algorithm Chebyshev type II filters are sometimes called inverse Chebyshev filters 
because of their relationship to Chebyshev type I filters. The cheb2ap function 
is a modification of the Chebyshev type I prototype algorithm:

1 cheb2ap replaces the frequency variable ω with 1/ω, turning the lowpass 
filter into a highpass filter while preserving the performance at ω = 1.

2 cheb2ap subtracts the filter transfer function from unity.

See Also

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Chapter 7.
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ellipap Elliptic analog lowpass filter prototype.
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6cheb2ordPurpose  Chebyshev type II filter order selection.

Syntax [n,Wn] = cheb2ord(Wp,Ws,Rp,Rs)
[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs,'s')

Description cheb2ord selects the minimum order digital or analog Chebyshev type II filter 
required to meet a set of filter design specifications:

Digital Domain

[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs) returns the order n of the lowest order 
Chebyshev filter that loses no more than Rp dB in the passband and has at 
least Rs dB of attenuation in the stopband. The passband runs from 0 to Wp and 
the stopband runs from Ws to 1, the Nyquist frequency. cheb2ord also returns 
Wn, the Chebyshev type II cutoff frequency that allows cheby2 to achieve the 
given specifications. 

Use cheb2ord for lowpass, highpass, bandpass, and bandstop filters. For 
highpass filters, Wp is greater than Ws. For bandpass and bandstop filters, Wp 
and Ws are two-element vectors that specify the corner frequencies at both 
edges of the filter, lower frequency edge first. For the band filters, cheb2ord 
returns Wn as a two-element row vector for input to cheby2.

If filter specifications call for a bandpass or bandstop filter with unequal ripple 
in each of the passbands or stopbands, design the filter as separate lowpass and 
highpass sections and cascade the two filters together.

Wp Passband corner frequency. Wp, the cutoff frequency, has a value 
between 0 and 1, where 1 corresponds to half the sampling 
frequency (the Nyquist frequency).

Ws Stopband corner frequency. Ws is in the same units as Wp; it has 
a value between 0 and 1, where 1 corresponds to half the 
sampling frequency (the Nyquist frequency).

Rp Passband ripple, in decibels. This value is the maximum 
permissible passband loss in decibels. The passband is 0 < w < Wp.

Rs Stopband attenuation, in decibels. This value is the number of 
decibels the stopband is down from the passband. The stopband 
is Ws < w < 1.
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Analog Domain

[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff 
frequencies Wn for an analog filter. In this case the frequencies in Wp and Ws are 
in radians per second and may be greater than 1.

Use cheb2ord for lowpass, highpass, bandpass, and bandstop filters, as 
described under “Digital Domain.” 

Examples For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of 
attenuation from 0 to 100 Hz, and attenuation at least 15 dB from 150 Hz to 
the Nyquist frequency:

Wp = 100/500; Ws = 150/500;
Rp = 3; Rs = 15;
[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs)

n =
     3

Wn =
    0.2609

[b,a] = cheby2(n,Rs,Wn);
freqz(b,a,512,1000)
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Next design a bandpass filter with a passband of 100 Hz to 200 Hz, less than 
3 dB of attenuation throughout the passband, and 30 dB stopbands 50 Hz out 
on both sides of the passband:

Wp = [100 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 30;
[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs)

n =
     4

Wn =
    0.1633    0.4665

[b,a] = cheby2(n,Rs,Wn);
freqz(b,a,512,1000)

Algorithm cheb2ord uses the Chebyshev lowpass filter order prediction formula described 
in [1]. The function performs its calculations in the analog domain for both 
analog and digital cases. For the digital case, it converts the frequency 
parameters to the s-domain before the order and natural frequency estimation 
process, then converts them back to the z-domain.
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cheb2ord initially develops a lowpass filter prototype by transforming the 
stopband frequencies of the desired filter to 1 rad/sec (for low- and highpass 
filters) and to -1 and 1 rad/sec (for bandpass and bandstop filters). It then 
computes the minimum order required for a lowpass filter to meet the 
passband specification.

See Also

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

buttord Butterworth filter order selection.

cheb1ord Chebyshev type I filter order selection.

cheby2 Chebyshev type II filter design (stopband ripple).

ellipord Elliptic filter order selection.

kaiserord Estimate parameters for an FIR filter design with 
Kaiser window.
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6chebwinPurpose Chebyshev window.

Syntax w = chebwin(n,r)

Description w = chebwin(n,r) returns the column vector w, containing the length n 
Chebyshev window whose Fourier transform magnitude sidelobe ripple is r dB 
below the mainlobe magnitude.

See Also

References [1] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John 
Wiley & Sons, 1979. Program 5.2.

bartlett Bartlett window.

blackman Blackman window.

boxcar Rectangular window.

hamming Hamming window.

hanning Hanning window.

kaiser Kaiser window.

triang Triangular window.
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6cheby1Purpose Chebyshev type I filter design (passband ripple).

Syntax [b,a] = cheby1(n,Rp,Wn)
[b,a] = cheby1(n,Rp,Wn,'ftype')
[b,a] = cheby1(n,Rp,Wn,'s')
[b,a] = cheby1(n,Rp,Wn,'ftype','s')
[z,p,k] = cheby1(...)
[A,B,C,D] = cheby1(...)

Description cheby1 designs lowpass, bandpass, highpass, and bandstop digital and analog 
Chebyshev type I filters. Chebyshev type I filters are equiripple in the 
passband and monotonic in the stopband. Type I filters roll off faster than type 
II filters, but at the expense of greater deviation from unity in the passband.

Digital Domain

[b,a] = cheby1(n,Rp,Wn) designs an order n lowpass digital Chebyshev 
filter with cutoff frequency Wn and Rp dB of ripple in the passband. It returns 
the filter coefficients in the length n+1 row vectors b and a, with coefficients in 
descending powers of z:

Cutoff frequency is the frequency at which the magnitude response of the filter 
is equal to –Rp dB. For cheby1, the cutoff frequency Wn is a number between 0 
and 1, where 1 corresponds to half the sampling frequency (the Nyquist 
frequency). Smaller values of passband ripple Rp lead to wider transition 
widths (shallower rolloff characteristics).

If Wn is a two-element vector, Wn = [w1 w2], cheby1 returns an order 2*n 
bandpass filter with passband w1 <  < w2.
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[b,a] = cheby1(n,Rp,Wn,'ftype') designs a highpass or bandstop filter, 
where ftype is

• high for a highpass digital filter with cutoff frequency Wn

• stop for an order 2*n bandstop digital filter if Wn is a two-element vector, 
Wn = [w1 w2]

The stopband is w1 < ω < w2.

With different numbers of output arguments, cheby1 directly obtains other 
realizations of the filter. To obtain zero-pole-gain form, use three output 
arguments:

[z,p,k] = cheby1(n,Rp,Wn) or

[z,p,k] = cheby1(n,Rp,Wn,'ftype') returns the zeros and poles in length n 
column vectors z and p and the gain in the scalar k. 

To obtain state-space form, use four output arguments:

[A,B,C,D] = cheby1(n,Rp,Wn) or

[A,B,C,D] = cheby1(n,Rp,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = cheby1(n,Rp,Wn,'s') designs an order n lowpass analog Chebyshev 
type I filter with cutoff frequency Wn. It returns the filter coefficients in length 
n + 1 row vectors b and a, in descending powers of s:

Cutoff frequency is the frequency at which the magnitude response of the filter 
is –Rp dB. For cheby1, the cutoff frequency Wn must be greater than 0. 
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If Wn is a two-element vector, Wn = [w1 w2], with w1 < w2, then 
cheby1(n,Rp,Wn,'s') returns an order 2*n bandpass analog filter with 
passband w1 < ω < w2.

[b,a] = cheby1(n,Rp,Wn,'ftype','s') designs a highpass or bandstop 
filter, where ftype is

•  high for a highpass analog filter with cutoff frequency Wn

•  stop for an order 2*n bandstop analog filter if Wn is a two-element vector, 
Wn = [w1 w2]

The stopband is w1 < ω < w2.

You can supply different numbers of output arguments for cheby1 to directly 
obtain other realizations of the analog filter. To obtain zero-pole-gain form, use 
three output arguments:

[z,p,k] = cheby1(n,Rp,Wn,'s') or

[z,p,k] = cheby1(n,Rp,Wn,'ftype','s') returns the zeros and poles in 
length n or 2*n column vectors z and p and the gain in the scalar k. 

To obtain state-space form, use four output arguments:

[A,B,C,D] = cheby1(n,Rp,Wn,'s') or

[A,B,C,D] = cheby1(n,Rp,Wn,'ftype','s') where A, B, C, and D are defined 
as

and u is the input, x is the state vector, and y is the output.

Examples For data sampled at 1000 Hz, design a 9th-order lowpass Chebyshev type I 
filter with 0.5 dB of ripple in the passband and a cutoff frequency of 300 Hz:

[b,a] = cheby1(9,0.5,300/500);

ẋ Ax Bu

y Cx Du

= +
= +
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The frequency response of the filter is

freqz(b,a,512,1000)

Design a 10th-order bandpass Chebyshev type I filter with a passband from 
100 to 200 Hz and plot its impulse response:

n = 10; Rp = 0.5;
Wn = [100 200]/500;
[b,a] = cheby1(n,Rp,Wn);
[y,t] = impz(b,a,101); stem(t,y)
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Limitations For high order filters, the state-space form is the most numerically accurate, 
followed by the zero-pole-gain form. The transfer function form is the least 
accurate; numerical problems can arise for filter orders as low as 15.

Algorithm cheby1 uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the 
cheb1ap function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter into a bandpass, highpass, or bandstop filter 
with desired cutoff frequencies, using a state-space transformation.

4 For digital filter design, cheby1 uses bilinear to convert the analog filter 
into a digital filter through a bilinear transformation with frequency 
prewarping. Careful frequency adjustment guarantees that the analog 
filters and the digital filters will have the same frequency response 
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain 
form, as required.

See Also besself Bessel analog filter design.

butter Butterworth analog and digital filter design.

cheb1ap Chebyshev type I analog lowpass filter prototype.

cheb1ord Chebyshev type I filter order selection.

cheby2 Chebyshev type II filter design (stopband ripple).

ellip Elliptic (Cauer) filter design.
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6cheby2Purpose Chebyshev type II filter design (stopband ripple).

Syntax [b,a] = cheby2(n,Rs,Wn)
[b,a] = cheby2(n,Rs,Wn,'ftype')
[b,a] = cheby2(n,Rs,Wn,'s')
[b,a] = cheby2(n,Rs,Wn,'ftype','s')
[z,p,k] = cheby2(...)
[A,B,C,D] = cheby2(...)

Description cheby2 designs lowpass, highpass, bandpass, and bandstop digital and analog 
Chebyshev type II filters. Chebyshev type II filters are monotonic in the 
passband and equiripple in the stopband. Type II filters do not roll off as fast 
as type I filters, but are free of passband ripple.

Digital Domain

[b,a] = cheby2(n,Rs,Wn) designs an order n lowpass digital Chebyshev type 
II filter with cutoff frequency Wn and stopband ripple Rs dB down from the peak 
passband value. It returns the filter coefficients in the length n + 1 row vectors 
b and a, with coefficients in descending powers of z:

Cutoff frequency is the beginning of the stopband, where the magnitude 
response of the filter is equal to –Rs dB. For cheby2, the cutoff frequency Wn is 
a number between 0 and 1, where 1 corresponds to half the sampling frequency 
(the Nyquist frequency). Larger values of stopband attenuation Rs lead to 
wider transition widths (shallower rolloff characteristics).

If Wn is a two-element vector, Wn = [w1 w2], cheby2 returns an order 2*n 
bandpass filter with passband w1 < ω < w2.
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[b,a] = cheby2(n,Rs,Wn,'ftype') designs a highpass or bandstop filter, 
where ftype is

• high for a highpass digital filter with cutoff frequency Wn

• stop for an order 2*n bandstop digital filter if Wn is a two-element vector, 
Wn = [w1 w2].

The stopband is w1 < ω < w2.

With different numbers of output arguments, cheby2 directly obtains other 
realizations of the filter. To obtain zero-pole-gain form, use three output 
arguments:

[z,p,k] = cheby2(n,Rs,Wn) or

[z,p,k] = cheby2(n,Rs,Wn,'ftype') returns the zeros and poles in length n 
column vectors z and p and the gain in the scalar k.

To obtain state-space form, use four output arguments:

[A,B,C,D] = cheby2(n,Rs,Wn) or

[A,B,C,D] = cheby2(n,Rs,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = cheby2(n,Rs,Wn,'s') designs an order n lowpass analog Chebyshev 
type II filter with cutoff frequency Wn. It returns the filter coefficients in the 
length n + 1 row vectors b and a, with coefficients in descending powers of s:

Cutoff frequency is the frequency at which the magnitude response of the filter 
is equal to –Rs dB. For cheby2, the cutoff frequency Wn must be greater than 0. 
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If Wn is a two-element vector, Wn = [w1 w2], with w1 < w2, then 
cheby2(n,Rs,Wn,'s') returns an order 2*n bandpass analog filter with 
passband w1 < ω < w2.

[b,a] = cheby2(n,Rs,Wn,'ftype','s') designs a highpass or bandstop 
filter, where ftype is

• high for a highpass analog filter with cutoff frequency Wn

• stop for an order 2*n bandstop analog filter if Wn is a two-element vector, 
Wn = [w1 w2]

The stopband is w1 < ω < w2.

With different numbers of output arguments, cheby2 directly obtains other 
realizations of the analog filter. To obtain zero-pole-gain form, use three output 
arguments:

[z,p,k] = cheby2(n,Rs,Wn,'s') or

[z,p,k] = cheby2(n,Rs,Wn,'ftype','s') returns the zeros and poles in 
length n or 2*n column vectors z and p and the gain in the scalar k. 

To obtain state-space form, use four output arguments:

[A,B,C,D] = cheby2(n,Rs,Wn,'s') or

[A,B,C,D] = cheby2(n,Rs,Wn,'ftype','s') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Examples For data sampled at 1000 Hz, design a ninth-order lowpass Chebyshev type II 
filter with stopband attenuation 20 dB down from the passband and a cutoff 
frequency of 300 Hz:

[b,a] = cheby2(9,20,300/500);

ẋ Ax Bu

y Cx Du

= +
= +
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The frequency response of the filter is 

freqz(b,a,512,1000)

Design a fifth-order bandpass Chebyshev type II filter with passband from 100 
to 200 Hz and plot the impulse response of the filter:

n = 5; r = 20;
Wn = [100 200]/500;
[b,a] = cheby2(n,r,Wn);
[y,t] = impz(b,a,101); stem(t,y)
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Limitations For high order filters, the state-space form is the most numerically accurate, 
followed by the zero-pole-gain form. The transfer function coefficient form is 
the least accurate; numerical problems can arise for filter orders as low as 15.

Algorithm cheby2 uses a five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the 
cheb2ap function.

2 It converts poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter into a bandpass, highpass, or bandstop filter 
with desired cutoff frequencies, using a state-space transformation.

4 For digital filter design, cheby2 uses bilinear to convert the analog filter 
into a digital filter through a bilinear transformation with frequency 
prewarping. Careful frequency adjustment guarantees that the analog 
filters and the digital filters will have the same frequency response 
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain 
form, as required.

See Also besself Bessel analog filter design.

butter Butterworth analog and digital filter design.

cheb2ap Chebyshev type II analog lowpass filter prototype.

cheb2ord Chebyshev type II filter order selection.

cheby1 Chebyshev type I filter design (passband ripple).

ellip Elliptic (Cauer) filter design.
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6chirpPurpose Swept-frequency cosine generator.

Syntax y = chirp(t,f0,t1,f1)
y = chirp(t,f0,t1,f1,'method')
y = chirp(t,f0,t1,f1,'method',phi)

Description y = chirp(t,f0,t1,f1) generates samples of a linear swept-frequency cosine 
signal at the time instances defined in array t, where f0 is the instantaneous 
frequency at time 0, and f1 is the instantaneous frequency at time t1. f0 and 
f1 are both in Hertz. If unspecified, f0 is 0, t1 is 1, and f1 is 100.

y = chirp(t,f0,t1,f1,'method') specifies alternative sweep method 
options, where method can be

• linear, which specifies an instantaneous frequency sweep fi(t) given by

where

β ensures that the desired frequency breakpoint f1 at time t1 is maintained.

• quadratic, which specifies an instantaneous frequency sweep fi(t) given by

where

• logarithmic specifies an instantaneous frequency sweep fi(t) given by

where

For a log-sweep, f1 must be greater than f0.

f t f ti ( ) = +0 β

β = −( ) /f f t1 0 1

f t f ti ( ) = +0
2β

β = −( ) /f f t1 0 1

f t fi
t( ) = +0 10β

β = −[ ]log ( ) /10 1 0 1f f t
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y = chirp(t,f0,t1,f1,'method',phi) allows an initial phase phi to be 
specified in degrees. If unspecified, phi is 0. Default values are substituted for 
empty or omitted trailing input arguments.

Examples Compute the spectrogram of a chirp with linear instantaneous frequency 
deviation:

t = 0:0.001:2; % 2 secs @ 1kHz sample rate
y = chirp(t,0,1,150); % Start @ DC, cross 150Hz at t=1 sec
specgram(y,256,1e3,256,250) % Display the spectrogram
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Compute the spectrogram of a chirp with quadratic instantaneous frequency 
deviation:

t = –2:0.001:2; % ±2 secs @ 1kHz sample rate
y = chirp(t,100,1,200,'quadratic'); % Start @ 100Hz, cross 200Hz 

% at t=1 sec
specgram(y,128,1e3,128,120) % Display the spectrogram
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See Also cos Cosine of vector/matrix elements (see the online 
MATLAB Function Reference).

diric Dirichlet or periodic sinc function.

gauspuls Gaussian-modulated sinusoidal pulse generator.

pulstran Pulse train generator.

rectpuls Sampled aperiodic rectangle generator.

sawtooth Sawtooth or triangle wave generator.

sin Sine of vector/matrix elements (see the online 
MATLAB Function Reference).

sinc Sinc function.

square Square wave generator.

tripuls Sampled aperiodic triangle generator.
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6coherePurpose Estimate magnitude squared coherence function between two signals.

Syntax Cxy = cohere(x,y)
Cxy = cohere(x,y,nfft)
[Cxy,f] = cohere(x,y,nfft,Fs)
Cxy = cohere(x,y,nfft,Fs,window)
Cxy = cohere(x,y,nfft,Fs,window,noverlap)
Cxy = cohere(x,y,...,'dflag')
cohere(x,y)

Description Cxy = cohere(x,y) finds the magnitude squared coherence between length n 
signal vectors x and y. The coherence is a function of the power spectra of x and 
y and the cross spectrum of x and y:

x and y must be the same length. Cxy = cohere(x,y) uses the following default 
values:

• nfft = min(256,length(x))

• Fs = 2

• window = hanning(nfft)

• noverlap = 0

nfft specifies the FFT length that cohere uses. This value determines the 
frequencies at which the coherence is estimated. Fs is a scalar that specifies the 
sampling frequency. window specifies a windowing function and the number of 
samples cohere uses in its sectioning of the x and y vectors. noverlap is the 
number of samples by which the sections overlap. Any arguments that you omit 
from the end of the parameter list use the default values shown above.

If x is real, cohere estimates the coherence function at positive frequencies 
only; in this case, the output Cxy is a column vector of length nfft/2 + 1 for 
nfft even and (nfft + 1)/2 for n odd. If x or y is complex, cohere estimates 
the coherence function at both positive and negative frequencies, and Cxy has 
length nfft.
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Cxy = cohere(x,y,nfft) uses the FFT length nfft in estimating the power 
spectrum for x. Specify nfft as a power of 2 for fastest execution.

[Cxy,f] = cohere(x,y,nfft,Fs) returns a vector f of frequencies at which 
the function evaluates the coherence. Fs is the sampling frequency. f is the 
same size as Cxy, so plot(f,Cxy) plots the coherence function versus properly 
scaled frequency. Fs has no effect on the output Cxy; it is a frequency scaling 
multiplier.

Cxy = cohere(x,y,nfft,Fs,window) specifies a windowing function and the 
number of samples per section of the vectors x and y. If you supply a scalar for 
window, cohere uses a Hanning window of that length. The length of the 
window must be less than or equal to nfft; cohere zero pads the sections if the 
window length exceeds nfft.

Cxy = cohere(x,y,nfft,Fs,window,noverlap) overlaps the sections of x by 
noverlap samples.

You can use the empty matrix [] to specify the default value for any input 
argument except x or y. For example,

Cxy = cohere(x,y,[],[],kaiser(128,5));

uses 256 as the value for nfft and 2 as the value for Fs.

Cxy = cohere(x,y,...,'dflag') specifies a detrend option, where dflag is

• linear, to remove the best straight-line fit from the prewindowed sections of 
x and y

• mean, to remove the mean from the prewindowed sections of x and y

• none, for no detrending (default)

The dflag parameter must appear last in the list of input arguments. cohere 
recognizes a dflag string no matter how many intermediate arguments are 
omitted.

cohere with no output arguments plots the coherence estimate versus 
frequency in the current figure window.
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Example Compute and plot the coherence estimate between two colored noise sequences 
x and y:

h = fir1(30,0.2,boxcar(31));
h1 = ones(1,10)/sqrt(10);
r = randn(16384,1);
x = filter(h1,1,r);
y = filter(h,1,x);
cohere(x,y,1024,[],[],512)

Diagnostics An appropriate diagnostic messages is displayed when incorrect arguments are 
used:

Requires window's length to be no greater than the FFT length.
Requires NOVERLAP to be strictly less than the window length.
Requires positive integer values for NFFT and NOVERLAP.
Requires vector (either row or column) input.
Requires inputs X and Y to have the same length.
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Algorithm cohere estimates the magnitude squared coherence function [1] using Welch’s 
method of power spectrum estimation (see references [2] and [3]), as follows:

1 It divides the signals x and y into overlapping sections, detrends each 
section, and multiplies each section by window.

2 It calculates the length nfft fast Fourier transform of each section. 

3 It averages the squares of the spectra of the x sections to form Pxx, averages 
the squares of the spectra of the y sections to form Pyy, and averages the 
products of the spectra of the x and y sections to form Pxy. It calculates Cxy 
by

Cxy = abs(Pxy).^2/(Pxx.*Pyy)

See Also

References [1] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: 
Prentice-Hall, 1988. Pg. 454.

[2] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[3] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation of Power 
Spectra: A Method Based on Time Averaging Over Short, Modified 
Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15 (June 1967). 
Pgs. 70-73.

csd Estimate the cross spectral density (CSD) of two 
signals.

psd Estimate the power spectral density (PSD) of a signal 
using Welch’s method.

tfe Transfer function estimate from input and output.
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6convPurpose Convolution and polynomial multiplication.

Syntax c = conv(a,b)

Description conv(a,b) convolves vectors a and b. The convolution sum is 

where N is the maximum sequence length. The series is indexed from n + 1 and 
k + 1 instead of the usual n and k because MATLAB vectors run from 1 to n 
instead of from 0 to n-1.

Example The convolution of a = [1 2 3] and b = [4 5 6] is

c = conv(a,b)

c =
    4    13    28    27    18

Algorithm This function is part of the MATLAB environment. It is an M-file that uses the 
filter primitive. conv computes the convolution operation as FIR filtering 
with an appropriate number of zeros appended to the input.

See Also

c n a k b n k
k

N
( ) ( ) ( )+ = + −

=

−
∑1 1

0

1

conv2 Two-dimensional convolution.

convmtx Convolution matrix.

convn N-dimensional convolution (see the online MATLAB 
Function Reference).

deconv Deconvolution and polynomial division.

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

residuez z-transform partial fraction expansion.

xcorr Cross-correlation function estimate.
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6conv2Purpose Two-dimensional convolution.

Syntax C = conv2(A,B)
C = conv2(A,B,'shape')

Description C = conv2(A,B) computes the two-dimensional convolution of matrices A and 
B. If one of these matrices describes a two-dimensional FIR filter, the other 
matrix is filtered in two dimensions.

Each dimension of the output matrix C is equal in size to the sum of the 
corresponding dimensions of the input matrices minus 1. For 
[ma,na] = size(A) and [mb,nb] = size(B), then size(C) = [ma+mb–
1,na+nb–1].

C = conv2(A,B,'shape') returns a subsection of the two-dimensional 
convolution with size specified by shape, where:

• full returns the full two-dimensional convolution (default)

• same returns the central part of the convolution that is the same size as A 

• valid returns only those parts of the convolution that are computed without 
the zero-padded edges. Using this option, size(C) = [ma–mb+1,na–nb+1] 
when size(A) > size(B)

conv2 executes most quickly when size(A) > size(B).

Examples In image processing, the Sobel edge-finding operation is a two-dimensional 
convolution of an input array with the special matrix

s = [1 2 1; 0 0 0; –1 –2 –1];

Given any image, the following line extracts the horizontal edges:

h = conv2(I,s);

The lines below extract first the vertical edges, then both horizontal and 
vertical edges combined:

v = conv2(I,s');
v2 = (sqrt(h.^2 + v.^2))
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See Also conv Convolution and polynomial multiplication.

convn N-dimensional convolution (see the online MATLAB 
Function Reference).

deconv Deconvolution and polynomial division.

filter2 Two-dimensional digital filtering.

xcorr Cross-correlation function estimate.

xcorr2 Two-dimensional cross-correlation.
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6convmtxPurpose Convolution matrix.

Syntax A = convmtx(c,n)
A = convmtx(r,n)

Description A convolution matrix is a matrix, formed from a vector, whose inner product 
with another vector is the convolution of the two vectors.

A = convmtx(c,n) where c is a length m column vector returns a matrix A of 
size (m + n–1)-by-n. The product of A and another column vector x of length n 
is the convolution of c with x.

A = convmtx(r,n) where r is a length m row vector returns a matrix A of size 
n-by-(m + n–1). The product of A and another row vector x of length n is the 
convolution of r with x.

Example Generate a simple convolution matrix:

h = [1 2 3 2 1];
convmtx(h,7)
ans =

 1    2    3    2    1    0    0    0    0    0    0
 0    1    2    3    2    1    0    0    0    0    0
 0    0    1    2    3    2    1    0    0    0    0
 0    0    0    1    2    3    2    1    0    0    0
 0    0    0    0    1    2    3    2    1    0    0
 0    0    0    0    0    1    2    3    2    1    0
 0    0    0    0    0    0    1    2    3    2    1

Note that convmtx handles edge conditions by zero padding.

In practice, it is more efficient to compute convolution using

y = conv(c,x)

than by using a convolution matrix:

n = length(x);
y = convmtx(c,n)*x

Algorithm convmtx uses the function toeplitz to generate the convolution matrix.
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See Also conv Convolution and polynomial multiplication.

convn N-dimensional convolution (see the online MATLAB 
Function Reference).

conv2 Two-dimensional convolution.

dftmtx Discrete Fourier transform matrix.
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6corrcoefPurpose Correlation coefficient matrix.

Syntax C = corrcoef(X)
C = corrcoef(X,Y)

Description corrcoef returns a matrix of correlation coefficients calculated from an input 
matrix whose rows are observations and whose columns are variables. If 
C = cov(X), then corrcoef(X) is the matrix whose element (i, j) is 

C = corrcoef(X) is the zeroth lag of the covariance function, that is, the 
zeroth lag of xcov(x,'coeff') packed into a square array.

C = corrcoef(X,Y) is the same as corrcoef([X Y]), that is, it concatenates 
X and Y in the row direction before its computation.

corrcoef removes the mean from each column before calculating the results. 
See the xcorr function for cross-correlation options.

This function is part of the standard MATLAB environment.

See Also

corrcoef( , )
( , )

( , ) ( , )
i j

C i j

C i i C j j
=

cov Covariance matrix.

mean Average value (see the online MATLAB Function 
Reference).

median Median value (see the online MATLAB Function 
Reference).

std Standard deviation (see the online MATLAB 
Function Reference).

xcorr Cross-correlation function estimate.

xcov Cross-covariance function estimate (equal to 
mean-removed cross-correlation).
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6covPurpose Covariance matrix.

Syntax c = cov(x)
c = cov(x,y)

Description cov computes the covariance matrix. If x is a vector, c is a scalar containing the 
variance. For an array where each row is an observation and each column a 
variable, cov(X) is the covariance matrix. diag(cov(X)) is a vector of 
variances for each column, and sqrt(diag(cov(X))) is a vector of standard 
deviations.

cov(x) is the zeroth lag of the covariance function, that is, the zeroth lag of 
xcov(x)/(n–1) packed into a square array.

cov(x,y) where x and y are column vectors of equal length is equivalent to 
cov([x y])), that is, it concatenates x and y in the row direction before its 
computation.

cov removes the mean from each column before calculating the results. 

This function is part of the standard MATLAB environment.

Algorithm [n,p] = size(x);
x = x–ones(n,1)*(sum(x)/n);
y = x'*x/(n–1);

See Also corrcoef Correlation coefficient matrix.

mean Average value (see the online MATLAB Function 
Reference).

median Median value (see the online MATLAB Function 
Reference).

std Standard deviation (see the online MATLAB 
Function Reference).

xcorr Cross-correlation function estimate.

xcov Cross-covariance function estimate (equal to 
mean-removed cross-correlation).
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6cplxpairPurpose Group complex numbers into complex conjugate pairs.

Syntax y = cplxpair(x)
y = cplxpair(x,tol)

Description y = cplxpair(x) returns x with complex conjugate pairs grouped together. 
cplxpair orders the conjugate pairs by increasing real part. Within a pair, the 
element with negative imaginary part comes first. The function returns all 
purely real values following all the complex pairs.

y = cplxpair(x,tol) includes a tolerance, tol, for determining which 
numbers are real and which are paired complex conjugates. By default, 
cplxpair uses a tolerance of 100*eps relative to abs(x(i)). cplxpair forces 
the complex conjugate pairs to be exact complex conjugates.

This function is part of the standard MATLAB environment.

Example Order five poles evenly spaced around the unit circle into complex pairs:

cplxpair(exp(2*pi*sqrt(–1)*(0:4)/5)')

ans =
    –0.8090 – 0.5878i
    –0.8090 + 0.5878i
     0.3090 – 0.9511i
     0.3090 + 0.9511i
     1.0000

Diagnostics If there is an odd number of complex numbers, or if the complex numbers 
cannot be grouped into complex conjugate pairs within the tolerance, cplxpair 
generates the error message:

Complex numbers can't be paired.
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6cremezPurpose Complex and nonlinear-phase equiripple FIR filter design

Syntax b = cremez(n,f,'fresp')
b = cremez(n,f,'fresp',w)
b = cremez(n,f,{'fresp',p1,p2,...},w)
b = cremez(n,f,a,w)
b = cremez(...,'sym')
b = cremez(...,'skip_stage2')
b = cremez(...,'debug')
b = cremez(...,{lgrid})
[b,delta,opt] = cremez(...)

Description cremez allows arbitrary frequency-domain constraints to be specified for the 
design of a possibly complex FIR filter. The Chebyshev (or minimax) filter error 
is optimized, producing equiripple FIR filter designs.

b = cremez(n,f,'fresp') returns a length n+1 FIR filter with the best 
approximation to the desired frequency response as returned by function 
fresp. f is a vector of frequency band edge pairs, specified in the range 
-1 and 1, where 1 corresponds to half the sampling frequency (the Nyquist 
frequency). The frequencies must be in increasing order, and f must have even 
length. The frequency bands span f(k) to f(k+1) for k odd; the intervals 
f(k+1) to f(k+2) for k odd are “transition bands” or “don’t care” regions during 
optimization.

b = cremez(n,f,'fresp',w) uses the real, non-negative weights in vector w 
to weight the fit in each frequency band. The length of w is half the length of f, 
so there is exactly one weight per band.

b = cremez(n,f,{'fresp',p1,p2,...},...) supplies optional parameters 
p1, p2, ..., to the frequency response function fresp. Predefined 'fresp' 
frequency response functions are included for a number of common filter 
designs, as described below. For all of the predefined frequency response 
functions, the symmetry option 'sym' defaults to 'even' if no negative 
frequencies are contained in f and d = 0; otherwise 'sym' defaults to 'none'. 
(See the 'sym' option below for details.) For all of the predefined frequency 
response functions, d specifies a group-delay offset such that the filter response 
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has a group delay of n/2+d in units of the sample interval. Negative values 
create less delay; positive values create more delay. By default, d = 0.

• lowpass, highpass, bandpass, bandstop

These functions share a common syntax, exemplified here by 'lowpass':

b = cremez(n,f,'lowpass',...) and

b = cremez(n,f,{'lowpass',d},...) design a linear-phase (n/2+d delay) 
filter.

• multiband designs a linear-phase frequency response filter with arbitrary 
band amplitudes.

b = cremez(n,f,{'multiband',a},...) and

b = cremez(n,f,{'multiband',a,d},...) specify vector a containing the 
desired amplitudes at the band edges in f. The desired amplitude at 
frequencies between pairs of points f(k) and f(k+1) for k odd is the line 
segment connecting the points (f(k),a(k)) and (f(k+1),a(k+1)).

• differentiator designs a linear-phase differentiator. For these designs, 
zero-frequency must be in a transition band, and band weighting is set to be 
inversely proportional to frequency.

b = cremez(n,f,{'differentiator',Fs},...) and

b = cremez(n,f,{'differentiator',Fs,d},...) specify the sample rate Fs 
used to determine the slope of the differentiator response. If omitted, Fs 
defaults to 1.

• hilbfilt designs a linear-phase Hilbert transform filter response. For 
Hilbert designs, zero-frequency must be in a transition band.

b = cremez(n,f,'hilbfilt',...) and

b = cremez(N,F,{'hilbfilt',d},...) design a linear-phase (n/2+d delay) 
Hilbert transform filter.

b = cremez(n,f,a,w) is a synonym for 
b = cremez(n,f,{'multiband',a},w).
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b = cremez(...,'sym') imposes a symmetry constraint on the impulse 
response of the design, where 'sym' may be one of the following:

• 'none' indicates no symmetry constraint

This is the default if any negative band edge frequencies are passed, or if 
'fresp' does not supply a default.

• 'even' indicates a real and even impulse response

This is the default for highpass, lowpass, bandpass, bandstop, and 
multiband designs.

• 'odd' indicates a real and odd impulse response

This is the default for Hilbert and differentiator designs.

• 'real' indicates conjugate symmetry for the frequency response

If any 'sym' option other than 'none' is specified, the band edges should only 
be specified over positive frequencies; the negative frequency region is filled in 
from symmetry. If a 'sym' option is not specified, the 'fresp' function is 
queried for a default setting.

b = cremez(...,'skip_stage2') disables the second-stage optimization 
algorithm, which executes only when cremez determines that an optimal 
solution has not been reached by the standard Remez error-exchange. 
Disabling this algorithm may increase the speed of computation, but may incur 
a reduction in accuracy. By default, the second-stage optimization is enabled.

b = cremez(...,'debug') enables the display of intermediate results during 
the filter design, where 'debug' may be one of 'trace', 'plots', 'both', or 
'off'. By default, it is set to 'off'.

b = cremez(...,{lgrid}) uses the integer lgrid to control the density of the 
frequency grid, which has roughly 2^nextpow2(lgrid*n) frequency points. 
The default value for lgrid is 25. Note that the {lgrid} argument must be a 
1-by-1 cell array.

Any combination of the 'sym', 'skip_stage2', 'debug', and {lgrid} options 
may be specified.

[b,delta] = cremez(...) returns the maximum ripple height delta.
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[b,delta,opt] = cremez(...) returns a structure opt of optional results 
computed by cremez and contains the following fields: 

Example Design a 31-tap, linear-phase, lowpass filter:

b = cremez(30,[–1 –0.5 –0.4 0.7 0.8 1],'lowpass');
freqz(b,1,512,'whole');

opt.fgrid Frequency grid vector used for the filter design optimization

opt.des Desired frequency response for each point in opt.fgrid

opt.wt Weighting for each point in opt.fgrid

opt.H Actual frequency response for each point in opt.fgrid

opt.error Error at each point in opt.fgrid

opt.iextr Vector of indices into opt.fgrid for extremal frequencies

opt.fextr Vector of extremal frequencies
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Remarks User-definable functions may be used, instead of the predefined frequency 
response functions for 'fresp'. The function is called from within cremez using 
the following syntax:

[dh,dw] = fresp(n,f,gf,w,p1,p2,...) where

• n is the filter order.

• f is the vector of frequency band edges that appear monotonically between 
-1 and 1, where 1 is the Nyquist frequency.

• gf is a vector of grid points that have been linearly interpolated over each 
specified frequency band by cremez. gf determines the frequency grid at 
which the response function must be evaluated. This is the same data 
returned by cremez in the fgrid field of the opt structure.

• w is a vector of real, positive weights, one per band, used during optimization. 
w is optional in the call to cremez; if not specified, it is set to unity weighting 
before being passed to 'fresp'.

• dh and dw are the desired complex frequency response and band weight 
vectors, respectively, evaluated at each frequency in grid gf.

• p1, p2, ..., are optional parameters that may be passed to 'fresp'.

Additionally, a preliminary call is made to 'fresp' to determine the default 
symmetry property 'sym'. This call is made using the syntax:

sym = fresp('defaults',{n,f,[],w,p1,p2,...})

The arguments may be used in determining an appropriate symmetry default 
as necessary. The function private/lowpass.m may be useful as a template for 
generating new frequency response functions.

Algorithm An extended version of the Remez exchange method is implemented for the 
complex case. This exchange method obtains the optimal filter when the 
equiripple nature of the filter is restricted to have n+2 extremals. When it does 
not converge, the algorithm switches to an ascent-descent algorithm that takes 
over to finish the convergence to the optimal solution. See the references for 
further details.
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Diagnostics The following diagnostic messages arise from incorrect usage of cremez:

Not enough input arguments.

F must contain an even number of band edge entries.

Band edges must be monotonically increasing.

Expecting a string argument.

Invalid argument arg specified.

Invalid default symmetry option sym returned from response 
function fresp. Must be one of 'none', 'real', 'even', or 'odd'.

Frequency band edges must be in the range [–1,+1] for designs with 
SYM = 'sym'.

Frequency band edges must be in the range [0,+1] for designs with 
SYM = 'sym'.

Incorrect size of results from response function fresp. Sizes must 
be the same size as the frequency grid GF.

Both –1 and 1 have been specified as frequencies in F, and the 
frequency spacing is too close to move either of them toward its 
neighbor.

Internal error: Grid frequencies out of range.

Internal error: domain must be "whole" or "half".

Internal error: obtained a negative bandwidth.

Internal error: two extremal frequecies at the same grid point.

Internal error: dBrange must be > 0.
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See Also

References [1] Karam, L.J., and J.H. McClellan. “Complex Chebyshev Approximation for 
FIR Filter Design.” IEEE Trans. on Circuits and Systems II. March 1995. 
Pgs. 207-216.

[2] Karam, L.J. Design of Complex Digital FIR Filters in the Chebyshev Sense. 
Ph.D. Thesis, Georgia Institute of Technology, March 1995.

[3] Demjanjov, V.F., and V.N. Malozemov. Introduction to Minimax. New York: 
John Wiley & Sons, 1974.

fir1 Window-based finite impulse response filter design—
standard response.

fir2 Window-based finite impulse response filter design—
arbitrary response.

firls Least square linear-phase FIR filter design.

remez Parks-McClellan optimal FIR filter design.

private/bandpass Bandpass filter design function.

private/bandstop Bandstop filter design function.

private/
differentiator

Differentiator filter design function.

private/highpass Highpass filter design function.

private/hilbfilt Hilbert filter design function.

private/lowpass Lowpass filter design function.

private/multiband Multiband filter design function.
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6csdPurpose Estimate the cross spectral density (CSD) of two signals.

Syntax Pxy = csd(x,y)
Pxy = csd(x,y,nfft)
[Pxy,f] = csd(x,y,nfft,Fs)
Pxy = csd(x,y,nfft,Fs,window)
Pxy = csd(x,y,nfft,Fs,window,noverlap)
Pxy = csd(x,y,...,'dflag')
[Pxy,Pxyc,f] = csd(x,y,nfft,Fs,window,noverlap,p)
csd(x,y,...)

Description Pxy = csd(x,y) estimates the cross spectral density of the length n sequences 
x and y using the Welch method of spectral estimation. Pxy = csd(x,y) uses 
the following default values:

• nfft = min(256,length(x))

• Fs = 2

• window = hanning(nfft)

• noverlap = 0

nfft specifies the FFT length that csd uses. This value determines the 
frequencies at which the cross spectrum is estimated. Fs is a scalar that 
specifies the sampling frequency. window specifies a windowing function and 
the number of samples csd uses in its sectioning of the x and y vectors. 
noverlap is the number of samples by which the sections overlap. Any 
arguments omitted from the end of the parameter list use the default values 
shown above.

If x and y are real, csd estimates the cross spectral density at positive 
frequencies only; in this case, the output Pxy is a column vector of length nfft/
2 + 1 for nfft even and (nfft + 1)/2 for nfft odd. If x or y is complex, csd 
estimates the cross spectral density at both positive and negative frequencies 
and Pxy has length nfft.

Pxy = csd(x,y,nfft) uses the FFT length nfft in estimating the cross 
spectral density of x and y. Specify nfft as a power of 2 for fastest execution.

[Pxy,f] = csd(x,y,nfft,Fs) returns a vector f of frequencies at which the 
function evaluates the CSD. f is the same size as Pxy, so plot(f,Pxy) plots the 
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spectrum versus properly scaled frequency. Fs has no effect on the output Pxy; 
it is a frequency scaling multiplier.

Pxy = csd(x,y,nfft,Fs,window) specifies a windowing function and the 
number of samples per section of the x vector. If you supply a scalar for window, 
csd uses a Hanning window of that length. The length of the window must be 
less than or equal to nfft; csd zero pads the sections if the length of the window 
is less than nfft. csd returns an error if the length of the window is greater 
than nfft.

Pxy = csd(x,y,nfft,Fs,window,noverlap) overlaps the sections of x and y 
by noverlap samples.

You can use the empty matrix [] to specify the default value for any input 
argument except x or y. For example,

csd(x,y,[],10000)

is equivalent to

csd(x)

but with a sampling frequency of 10,000 Hz instead of the default of 2 Hz. 

Pxy = csd(x,y,...,'dflag') specifies a detrend option, where dflag is

• linear, to remove the best straight-line fit from the prewindowed sections of 
x and y

• mean, to remove the mean from the prewindowed sections of x and y

• none, for no detrending (default)

The dflag parameter must appear last in the list of input arguments. csd 
recognizes a dflag string no matter how many intermediate arguments are 
omitted.

[Pxy,Pxyc,f] = csd(x,y,nfft,Fs,window,noverlap,p) where p is a 
positive scalar between 0 and 1 returns a vector Pxyc that contains an estimate 
of the p*100 percent confidence interval for Pxy. Pxyc is a two-column matrix 
the same length as Pxy. The interval [Pxyc(:,1), Pxyc(:,2)] covers the true 
CSD with probability p. plot(f,[Pxy Pxyc]) plots the cross spectrum inside 
the p*100 percent confidence interval. If unspecified, p defaults to 0.95.
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csd(x,y,...) plots the CSD versus frequency in the current figure window. If 
the p parameter is specified, the plot includes the confidence interval.

Example Generate two colored noise signals and plot their CSD with a confidence 
interval of 95%. Specify a length 1024 FFT, a 500 point triangular window with 
no overlap, and a sampling frequency of 10 Hz:

h = fir1(30,0.2,boxcar(31));
h1 = ones(1,10)/sqrt(10);
r = randn(16384,1);
x = filter(h1,1,r);
y = filter(h,1,x);
csd(x,y,1024,10000,triang(500),0,[])
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Algorithm csd implements the Welch method of spectral density estimation (see 
references [1] and [2]):

1 It applies the window specified by the window vector to each successive 
detrended section.

2 It transforms each section with an nfft-point FFT.

3 It forms the periodogram of each section by scaling the product of the 
transform of the y section and the conjugate of the transformed x section.

4 It averages the periodograms of the successive overlapping sections to form 
Pxy, the cross spectral density of x and y.

The number of sections that csd averages is k, where k is 

fix((length(x)–noverlap)/(length(window)–noverlap))

Diagnostics An appropriate diagnostic message is displayed when incorrect arguments to 
csd are used:

Requires window's length to be no greater than the FFT length.
Requires NOVERLAP to be strictly less than the window length.
Requires positive integer values for NFFT and NOVERLAP.
Requires vector (either row or column) input.
Requires inputs X and Y to have the same length.
Requires confidence parameter to be a scalar between 0 and 1.

See Also cohere Estimate magnitude squared coherence function 
between two signals.

pburg Power spectrum estimate using the Burg method.

pmtm Power spectrum estimate using the multitaper 
method (MTM).

pmusic Power spectrum estimate using MUSIC eigenvector 
method.

psd Estimate the power spectral density (PSD) of a signal 
using Welch’s method.

pyulear Power spectrum estimate using Yule-Walker AR 
method.

tfe Transfer function estimate from input and output.
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References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 414-419.

[2] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation of Power 
Spectra: A Method Based on Time Averaging Over Short, Modified 
Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15 (June 1967). 
Pgs. 70-73.

[3] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, 1989. Pg. 737.
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6cztPurpose Chirp z-transform.

Syntax y = czt(x,m,w,a)
y = czt(x)

Description y = czt(x,m,w,a) returns the chirp z-transform of signal x. The chirp 
z-transform is the z-transform of x along a spiral contour defined by w and a. m 
is a scalar that specifies the length of the transform, w is the ratio between 
points along the z-plane spiral contour of interest, and scalar a is the complex 
starting point on that contour. The contour, a spiral or “chirp” in the z-plane, is 
given by

z = a*(w.^–(0:m–1))

y = czt(x) uses the following default values:

• m = length(x)

• w = exp(j*2*pi/m)
• a = 1

With these defaults, czt returns the z-transform of x at m equally spaced points 
around the unit circle. This is equivalent to the discrete Fourier transform of 
x, or fft(x). The empty matrix [] specifies the default value for a parameter.

If x is a matrix, czt(x,m,w,a) transforms the columns of x.

Examples Create a random vector x of length 1013 and compute its DFT using czt. This 
is faster than the fft function on the same sequence.

x = randn(1013,1);
y = czt(x);

Use czt to zoom in on a narrow-band section (100 to 150 Hz) of a filter’s 
frequency response. First design the filter:

h = fir1(30,125/500,boxcar(31)); % filter
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Establish frequency and CZT parameters:

Fs = 1000; f1 = 100; f2 = 150;  % in Hertz
m = 1024;
w = exp(–j*2*pi*(f2–f1)/(m*Fs));
a = exp(j*2*pi*f1/Fs);

Compute both the DFT and CZT of the filter:

y = fft(h,1000);
z = czt(h,m,w,a);

Create frequency vectors and compare the results:

fy = (0:length(y)–1)'*1000/length(y); 
fz = ((0:length(z)–1)'*(f2–f1)/length(z)) + f1;
plot(fy(1:500),abs(y(1:500))); axis([1 500 0 1.2])
plot(fz,abs(z)); axis([f1 f2 0 1.2])

Algorithm czt uses the next power-of-2 length FFT to perform a fast convolution when 
computing the z-transform on a specified chirp contour [1]. czt can be 
significantly faster than fft for large, prime-length sequences.

Diagnostics If m, w, or a is not a scalar, czt gives the following error message:

Inputs M, W, and A must be scalars.

See Also
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fft One-dimensional fast Fourier transform.

freqz Frequency response of digital filters.
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References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pgs. 393-399.
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6dctPurpose Discrete cosine transform (DCT).

Syntax y = dct(x)
y = dct(x,n)

Description y = dct(x) returns the unitary discrete cosine transform of x

where 

N is the length of x, and x and y are the same size. If x is a matrix, dct 
transforms its columns. The series is indexed from n = 1 and k = 1 instead of 
the usual n = 0 and k = 0 because MATLAB vectors run from 1 to N instead of 
from 0 to N- 1.

y = dct(x,n) pads or truncates x to length n before transforming.

The DCT is closely related to the discrete Fourier transform. You can often 
reconstruct a sequence very accurately from only a few DCT coefficients, a 
useful property for applications requiring data reduction.
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Example Find how many DCT coefficients represent 99% of the energy in a sequence:

x = (1:100) + 50*cos((1:100)*2*pi/40);
X = dct(x);
[XX,ind] = sort(abs(X)); ind = fliplr(ind);
i = 1;
while (norm([X(ind(1:i)) zeros(1,100–i)])/norm(X)<.99)
   i = i + 1;
end

i = 
      3

See Also

References [1] Jain, A.K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: 
Prentice-Hall, 1989.

[2] Pennebaker, W.B., and J.L. Mitchell. JPEG Still Image Data Compression 
Standard. New York, NY: Van Nostrand Reinhold, 1993. Chapter 4.

fft One-dimensional fast Fourier transform.

idct Inverse discrete cosine transform.

dct2 Two-dimensional DCT (see Image Processing Toolbox 
User’s Guide).

idct2 Two-dimensional inverse DCT (see Image Processing 
Toolbox User’s Guide).
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6decimatePurpose Decrease the sampling rate for a sequence (decimation).

Syntax y = decimate(x,r)
y = decimate(x,r,n)
y = decimate(x,r,'fir')
y = decimate(x,r,n,'fir')

Description Decimation reduces the original sampling rate for a sequence to a lower rate. 
It is the opposite of interpolation. The decimation process filters the input data 
with a lowpass filter and then resamples the resulting smoothed signal at a 
lower rate.

y = decimate(x,r) reduces the sample rate of x by a factor r. The decimated 
vector y is r times shorter in length than the input vector x. By default, 
decimate employs an eighth-order lowpass Chebyshev type I filter. It filters 
the input sequence in both the forward and reverse directions to remove all 
phase distortion, effectively doubling the filter order.

y = decimate(x,r,n) uses an order n Chebyshev filter. Orders above 13 are 
not recommended because of numerical instability. MATLAB displays a 
warning in this case.

y = decimate(x,r,'fir') uses a 30-point FIR filter, instead of the 
Chebyshev IIR filter. Here decimate filters the input sequence in only one 
direction. This technique conserves memory and is useful for working with long 
sequences.

y = decimate(x,r,n,'fir') uses a length n FIR filter.

Example Decimate a signal by a factor of four:

t = 0:.00025:1; % time vector
x = sin(2*pi*30*t) + sin(2*pi*60*t);
y = decimate(x,4);
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View the original and decimated signals:

stem(x(1:120)), axis([0 120 –2 2]) % original signal
stem(y(1:30))  % decimated signal

Algorithm decimate uses decimation algorithms 8.2 and 8.3 from [1]:

1 It designs a lowpass filter. By default, decimate uses a Chebyshev type I 
filter with normalized cutoff frequency 0.8/r and 0.05 dB of passband ripple. 
For the fir option, decimate designs a lowpass FIR filter with cutoff 
frequency 1/r using fir1.

2 For the FIR filter, decimate applies the filter to the input vector in one 
direction. In the IIR case, decimate applies the filter in forward and reverse 
directions with filtfilt. 

3 decimate resamples the filtered data by selecting every r–th point.

Diagnostics If r is not an integer, decimate gives the following error message:

Resampling rate R must be an integer.

If n specifies an IIR filter with order greater than 13, decimate gives the 
following warning:

Warning: IIR filters above order 13 may be unreliable.
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See Also

References [1] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John 
Wiley & Sons, 1979. Chapter 8.

interp Increase sampling rate by an integer factor (interpolation).

resample Change sampling rate by any factor.

spline Cubic spline interpolation (see the online MATLAB 
Function Reference).

upfirdn Upsample, apply an FIR filter, and downsample.
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6deconvPurpose Deconvolution and polynomial division.

Syntax [q,r] = deconv(b,a)

Description [q,r] = deconv(b,a) deconvolves vector a out of vector b, using long division. 
The result (quotient) is returned in vector q and the remainder in vector r such 
that b = conv(q,a) + r. 

If a and b are vectors of polynomial coefficients, convolving them is equivalent 
to polynomial multiplication, and deconvolution is equivalent to polynomial 
division. The result of dividing b by a is quotient q and remainder r.

deconv is part of the standard MATLAB environment.

Example The convolution of a = [1 2 3] and b = [4 5 6] is

c = conv(a,b)

c =
    4    13    28    27    18

Use deconv to divide b back out:

[q,r] = deconv(c,a)

q =
    4    5    6

r =
    0    0    0    0    0

Algorithm This function is an M-file in the MATLAB environment that uses the filter 
primitive. Deconvolution is the impulse response of an IIR filter.

See Also conv Convolution and polynomial multiplication.

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

residuez z-transform partial fraction expansion.
6-97



demod
6demodPurpose Demodulation for communications simulation.

Syntax x = demod(y,Fc,Fs,'method')
x = demod(y,Fc,Fs,'method',opt)
x = demod(y,Fc,Fs,'pwm','centered')
[x1,x2] = demod(y,Fc,Fs,'qam')

Description demod performs demodulation, that is, it obtains the original signal from a 
modulated version of the signal. demod undoes the operation performed by 
modulate.

x = demod(y,Fc,Fs,'method',opt) demodulates the real carrier signal y 
with a carrier frequency Fc and sampling frequency Fs, using one of the options 
listed below for method. (Note that some methods accept an option, opt.)

amdsb–sc

or

am

Amplitude demodulation, double sideband, suppressed 
carrier. Multiplies y by a sinusoid of frequency Fc and applies a 
fifth-order Butterworth lowpass filter using filtfilt:

x = y.*cos(2*pi*Fc*t);
[b,a] = butter(5,Fc*2/Fs);
x = filtfilt(b,a,x);

amdsb–tc Amplitude demodulation, double sideband, transmitted 
carrier. Multiplies y by a sinusoid of frequency Fc, and applies a 
fifth-order Butterworth lowpass filter using filtfilt:

x = y.*cos(2*pi*Fc*t);
[b,a] = butter(5,Fc*2/Fs);
x = filtfilt(b,a,x);

If you specify opt, demod subtracts scalar opt from x. The default 
value for opt is 0.

amssb Amplitude demodulation, single sideband. Multiplies y by a 
sinusoid of frequency Fc and applies a fifth-order Butterworth 
lowpass filter using filtfilt:

x = y.*cos(2*pi*Fc*t);
[b,a] = butter(5,Fc*2/Fs);
x = filtfilt(b,a,x);
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The default method is 'am'. Except for the 'ptm' and 'pwm' cases, x is the 
same size as y.

If y is a matrix, demod demodulates its columns.

x = demod(y,Fc,Fs,'pwm','centered') finds the pulse widths assuming 
they are centered at the beginning of each period. x is length
length(y)*Fc/Fs.

fm Frequency demodulation. Demodulates the FM waveform by 
modulating the Hilbert transform of y by a complex exponential 
of frequency –Fc Hz and obtains the instantaneous frequency of 
the result.

pm Phase demodulation. Demodulates the PM waveform by 
modulating the Hilbert transform of y by a complex exponential 
of frequency –Fc Hz and obtains the instantaneous phase of the 
result.

ptm Pulse-time demodulation. Finds the pulse times of a pulse-time 
modulated signal y. For correct demodulation, the pulses cannot 
overlap. x is length length(t)*Fc/Fs.

pwm Pulse-width demodulation. Finds the pulse widths of a 
pulse-width modulated signal y. demod returns in x a vector whose 
elements specify the width of each pulse in fractions of a period. 
The pulses in y should start at the beginning of each carrier 
period, that is, they should be left justified.

qam Quadrature amplitude demodulation.
[x1,x2] = demod(y,Fc,Fs,'qam') multiplies y by a cosine and a 
sine of frequency Fc and applies a fifth-order Butterworth 
lowpass filter using filtfilt:

x1 = y.*cos(2*pi*Fc*t);
x2 = y.*sin(2*pi*Fc*t);
[b,a] = butter(5,Fc*2/Fs);
x1 = filtfilt(b,a,x1);
x2 = filtfilt(b,a,x2);
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See Also modulate Modulation for communications simulation.

vco Voltage controlled oscillator.
6-100



detrend
6detrendPurpose Remove linear trends.

Syntax y = detrend(x)
y = detrend(x,0)

Description detrend removes the mean value or linear trend from a vector or matrix, 
usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and returns it 
in y. If x is an array, detrend removes the trend from each column.

y = detrend(x,0) removes the mean value from vector x or, if x is an array, 
from each column of the array.

Algorithm detrend computes the least-squares fit of a straight line to the data and 
subtracts the resulting function from the data. The main part of the algorithm 
is

m = length(x);
a = [(1:m)'/m ones(m,1)];
y = x – a*(a\x);

To obtain the equation of the straight-line fit, use polyfit.

See Also polyfit Polynomial curve fitting (see the online MATLAB 
Function Reference).
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6dftmtxPurpose Discrete Fourier transform matrix.

Syntax A = dftmtx(n)

Description A discrete Fourier transform matrix is a complex matrix of values around the 
unit circle, whose matrix product with a vector computes the discrete Fourier 
transform of the vector.

A = dftmtx(n) returns the n-by-n complex matrix A that, when multiplied 
into a length n column vector x:

y = A*x

computes the discrete Fourier transform of x.

The inverse discrete Fourier transform matrix is

Ai = conj(dftmtx(n))/n

Example In practice, the discrete Fourier transform is computed more efficiently and 
uses less memory with an FFT algorithm

x = 1:256;
y1 = fft(x);

than by using the Fourier transform matrix

n = length(x);
y2 = x*dftmtx(n);
norm(y1–y2)

ans = 

    2.0016e–09

Algorithm dftmtx uses an outer product to generate the transform matrix.

See Also convmtx Convolution matrix.

fft One-dimensional fast Fourier transform.
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6diricPurpose Dirichlet or periodic sinc function.

Syntax y = diric(x,n)

Description y = diric(x,n) returns a vector or array y the same size as x. The elements 
of y are the Dirichlet function of the elements of x. n must be a positive integer.

The Dirichlet function, or periodic sinc function, is

for any nonzero integer n. This function has period 2π for n odd and period 4π 
for n even. Its peak value is 1, and its minimum value is -1 for n even. The 
magnitude of this function is (1/n) times the magnitude of the discrete-time 
Fourier transform of the n-point rectangular window.

Diagnostics If n is not a positive integer, diric gives the following error message:

Requires n to be a positive integer.

See Also
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     else
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cos Cosine of vector/matrix elements (see the online 
MATLAB Function Reference).

gauspuls Gaussian-modulated sinusoidal pulse generator.

pulstran Pulse train generator.

rectpuls Sampled aperiodic rectangle generator.

sawtooth Sawtooth or triangle wave generator.

sin Sine of vector/matrix elements (see the online 
MATLAB Function Reference).

sinc Sinc or sin(πt)/πt function.

square Square wave generator.

tripuls Sampled aperiodic triangle generator.
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6dpssPurpose Discrete prolate spheroidal sequences (Slepian sequences).

Syntax [e,v] = dpss(n,nw)
[e,v] = dpss(n,nw,k)
[e,v] = dpss(n,nw,[k1 k2])
[e,v] = dpss(n,nw,'spline')
[e,v] = dpss(n,nw,'spline',Ni)
[e,v] = dpss(n,nw,'linear')
[e,v] = dpss(n,nw,'linear',Ni)
[e,v] = dpss(...,'trace')
[e,v] = dpss(...,'int','trace')

Description [e,v] = dpss(n,nw) generates the first 2*nw discrete prolate spheroidal 
sequences (DPSS) of length n in the columns of e, and their corresponding 
concentrations in vector v. They are also generated in the DPSS MAT-file 
database dpss.mat. nw must be less than n/2.

[e,v] = dpss(n,nw,k) returns the k most band-limited sequences of the 2*nw 
discrete prolate spheroidal sequences calculated. k must be between 0 and 
2*nw.

[e,v] = dpss(n,nw,[k1 k2]) returns the k1-th through the k2-th sequences 
from the 2*nw discrete prolate spheroidal sequences calculated, where 
1 ≤ k1 ≤ k2 ≤ (2*nw).

For all of the above forms, 

• The Slepian sequences are calculated directly.

• The sequences are generated in the frequency band |ω| ≤ (2πW), where 
W = nw/n is the half-bandwidth and ω is in radians.

• e(:,1) is the length n signal most concentrated in the frequency band 
|ω| ≤ (2πW) radians, e(:,2) is the signal orthogonal to e(:,1) that is most 
concentrated in this band, e(:,3) is the signal orthogonal to both e(:,1) 
and e(:,2) that is most concentrated in this band, etc. 

• For multitaper spectral analysis, typical choices for nw are 2, 5/2, 3, 7/2, or 4.

[e,v] = dpss(n,nw,'spline') uses spline interpolation to compute e and v 
from the sequences in dpss.mat with length closest to n.
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[e,v] = dpss(n,nw,'spline',Ni) interpolates from existing length Ni 
sequences.

[e,v] = dpss(n,nw,'linear') and 

[e,v] = dpss(n,nw,'linear',Ni) use linear interpolation, which is much 
faster but less accurate than spline interpolation. 'linear' requires Ni > n.

[e,v] = dpss(...,'trace') and 

[e,v] = dpss(...,'int','trace') use a trailing 'trace' argument to find 
out which method DPSS uses, where 'int' is either 'spline' or 'linear'.

See Also

References [1] Percival, D.B., and A.T. Walden. Spectral Analysis for Physical 
Applications: Multitaper and Conventional Univariate Techniques. Cambridge: 
Cambridge University Press, 1993.

dpssclear Remove discrete prolate spheroidal sequences from 
database.

dpssdir Discrete prolate spheroidal sequences database 
directory.

dpssload Load discrete prolate spheroidal sequences from 
database.

dpsssave Save discrete prolate spheroidal sequences in 
database.

pmtm Power spectrum estimate using the multitaper 
method (MTM).
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6dpssclearPurpose Remove discrete prolate spheroidal sequences from database.

Syntax dpssclear(n,nw)

Description dpssclear(n,nw) removes sequences with length n and time-bandwidth 
product nw from the DPSS MAT-file database dpss.mat.

See Also dpss Discrete prolate spheroidal sequences (Slepian 
sequences).

dpssdir Discrete prolate spheroidal sequences database 
directory.

dpssload Load discrete prolate spheroidal sequences from 
database.

dpsssave Save discrete prolate spheroidal sequences in 
database.
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6dpssdirPurpose Discrete prolate spheroidal sequences database directory.

Syntax dpssdir
dpssdir(n)
dpssdir(nw,'nw')
dpssdir(n,nw)
index = dpssdir

Description dpssdir manages the database directory that contains the generated DPSS 
samples in the DPSS MAT-file database dpss.mat.

dpssdir lists the directory of saved sequences in dpss.mat.

dpssdir(n) lists the sequences saved with length n.

dpssdir(nw,'nw') lists the sequences saved with time-bandwidth product nw.

dpssdir(n,nw) lists the sequences saved with length n and time-bandwidth 
product nw.

index = dpssdir is a structure array describing the DPSS database. Pass n 
and nw options as for the no output case to get a filtered index.

See Also dpss Discrete prolate spheroidal sequences (Slepian 
sequences).

dpssclear Remove discrete prolate spheroidal sequences from 
database.

dpssload Load discrete prolate spheroidal sequences from 
database.

dpsssave Save discrete prolate spheroidal sequences in 
database.
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6dpssloadPurpose Load discrete prolate spheroidal sequences from database.

Syntax [e,v] = dpssload(n,nw)

Description [e,v] = dpssload(n,nw) loads all sequences with length n and 
time-bandwidth product nw in the columns of e and their corresponding 
concentrations in vector v from the DPSS MAT-file database dpss.mat.

See Also dpss Discrete prolate spheroidal sequences (Slepian 
sequences).

dpssclear Remove discrete prolate spheroidal sequences from 
database.

dpssdir Discrete prolate spheroidal sequences database 
directory.

dpsssave Save discrete prolate spheroidal sequences in 
database.
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6dpsssavePurpose Save discrete prolate spheroidal sequences in database.

Syntax dpsssave(nw,e,v)
status = dpsssave(nw,e,v)

Description dpsssave(nw,e,v) saves the sequences in the columns of e and their 
corresponding concentrations in vector v in the DPSS MAT-file database 
dpss.mat.

• It is not necessary to specify sequence length, because the length of the 
sequence is determined by the number of rows of e.

• nw is the time-bandwidth product that was specified when the sequence was 
created using dpss.

status = dpsssave(nw,e,v) returns 0 if the save was successful and 1 if 
there was an error.

See Also dpss Discrete prolate spheroidal sequences (Slepian 
sequences).

dpssclear Remove discrete prolate spheroidal sequences from 
database.

dpssdir Discrete prolate spheroidal sequences database 
directory.

dpssload Load discrete prolate spheroidal sequences from 
database.
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6ellipPurpose Elliptic (Cauer) filter design.

Syntax [b,a] = ellip(n,Rp,Rs,Wn)
[b,a] = ellip(n,Rp,Rs,Wn,'ftype')
[b,a] = ellip(n,Rp,Rs,Wn,'s')
[b,a] = ellip(n,Rp,Rs,Wn,'ftype','s')
[z,p,k] = ellip(...)
[A,B,C,D] = ellip(...)

Description ellip designs lowpass, bandpass, highpass, and bandstop digital and analog 
elliptic filters. Elliptic filters offer steeper rolloff characteristics than 
Butterworth or Chebyshev filters, but are equiripple in both the pass- and 
stopbands. In general, elliptic filters meet given performance specifications 
with the lowest order of any filter type.

Digital Domain

[b,a] = ellip(n,Rp,Rs,Wn) designs an order n lowpass digital elliptic filter 
with cutoff frequency Wn, Rp dB of ripple in the passband, and a stopband Rs dB 
down from the peak value in the passband. It returns the filter coefficients in the 
length n + 1 row vectors b and a, with coefficients in descending powers of z:

The cutoff frequency is the edge of the passband, at which the magnitude 
response of the filter is –Rp dB. For ellip, the cutoff frequency Wn is a number 
between 0 and 1, where 1 corresponds to half the sample frequency (Nyquist 
frequency). Smaller values of passband ripple Rp and larger values of stopband 
attenuation Rs both lead to wider transition widths (shallower rolloff 
characteristics).

If Wn is a two-element vector, Wn = [w1 w2], ellip returns an order 2*n 
bandpass filter with passband w1 <  < w2.
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[b,a] = ellip(n,Rp,Rs,Wn,'ftype') designs a highpass or bandstop filter, 
where ftype is

• high for a highpass digital filter with cutoff frequency Wn

• stop for an order 2*n bandstop digital filter if Wn is a two-element vector, 
Wn = [w1 w2]

The stopband is w1 < ω < w2.

With different numbers of output arguments, ellip directly obtains other 
realizations of the filter. To obtain zero-pole-gain form, use three output 
arguments:

[z,p,k] = ellip(n,Rp,Rs,Wn) or

[z,p,k] = ellip(n,Rp,Rs,Wn,'ftype') returns the zeros and poles in 
length n column vectors z and p and the gain in the scalar k. 

To obtain state-space form, use four output arguments:

[A,B,C,D] = ellip(n,Rp,Rs,Wn) or

[A,B,C,D] = ellip(n,Rp,Rs,Wn,'ftype') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Analog Domain

[b,a] = ellip(n,Rp,Rs,Wn,'s') designs an order n lowpass analog elliptic 
filter with cutoff frequency Wn and returns the filter coefficients in the length 
n + 1 row vectors b and a, in descending powers of s:

The cutoff frequency is the edge of the passband, at which the magnitude 
response of the filter is –Rp dB. For ellip, the cutoff frequency Wn must be 
greater than 0.
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If Wn is a two-element vector with w1 < w2, then ellip(n,Rp,Rs,Wn,'s') 
returns an order 2*n bandpass analog filter with passband w1 < ω < w2.

[b,a] = ellip(n,Rp,Rs,Wn,'ftype','s') designs a highpass or bandstop 
filter, where ftype is

•  high for a highpass analog filter with cutoff frequency Wn

•  stop for an order 2*n bandstop analog filter. Wn is a two-element vector, 
[w1 w2], specifying the stopband w1 < ω < w2.

With different numbers of output arguments, ellip directly obtains other 
realizations of the analog filter. To obtain zero-pole-gain form, use three output 
arguments:

[z,p,k] = ellip(n,Rp,Rs,Wn,'s') or

[z,p,k] = ellip(n,Rp,Rs,Wn,'ftype','s') returns the zeros and poles in 
length n or 2*n column vectors z and p and the gain in the scalar k. 

To obtain state-space form, use four output arguments:

[A,B,C,D] = ellip(n,Rp,Rs,Wn,'s') or

[A,B,C,D] = ellip(n,Rp,Rs,Wn,'ftype','s') where A, B, C, and D are

and u is the input, x is the state vector, and y is the output.

Examples For data sampled at 1000 Hz, design a sixth-order lowpass elliptic filter with a 
cutoff frequency of 300 Hz, 3 dB of ripple in the passband, and 50 dB of 
attenuation in the stopband:

[b,a] = ellip(6,3,50,300/500);

ẋ Ax Bu

y Cx Du

= +
= +
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The filter’s frequency response is

freqz(b,a,512,1000)
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Design a 20th-order bandpass elliptic filter with a passband from 100 to 200 Hz 
and plot its impulse response:

n = 10; Rp = 0.5; Rs = 20;
Wn = [100 200]/500;
[b,a] = ellip(n,Rp,Rs,Wn);
[y,t] = impz(b,a,101); stem(t,y)

Limitations For high order filters, the state-space form is the most numerically accurate, 
followed by the zero-pole-gain form. The transfer function form is the least 
accurate; numerical problems can arise for filter orders as low as 15.
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Algorithm The design of elliptic filters is the most difficult and computationally intensive 
of the Butterworth, Chebyshev type I and II, and elliptic designs. ellip uses a 
five-step algorithm:

1 It finds the lowpass analog prototype poles, zeros, and gain using the 
ellipap function.

2 It converts the poles, zeros, and gain into state-space form.

3 It transforms the lowpass filter to a bandpass, highpass, or bandstop filter 
with the desired cutoff frequencies using a state-space transformation.

4 For digital filter design, ellip uses bilinear to convert the analog filter 
into a digital filter through a bilinear transformation with frequency 
prewarping. Careful frequency adjustment guarantees that the analog 
filters and the digital filters will have the same frequency response 
magnitude at Wn or w1 and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain 
form, as required.

See Also besself Bessel analog filter design.

butter Butterworth analog and digital filter design.

cheby1 Chebyshev type I filter design (passband ripple).

cheby2 Chebyshev type II filter design (stopband ripple).

ellipap Elliptic analog lowpass filter prototype.

ellipord Elliptic filter order selection.
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6ellipapPurpose Elliptic analog lowpass filter prototype.

Syntax [z,p,k] = ellipap(n,Rp,Rs)

Description [z,p,k] = ellipap(n,Rp,Rs) returns the zeros, poles, and gain of an order n 
elliptic analog lowpass filter prototype, with Rp dB of ripple in the passband, 
and a stopband Rs dB down from the peak value in the passband. The zeros and 
poles are returned in length n column vectors z and p and the gain in scalar k. 
If n is odd, z is length n – 1. The transfer function is

Elliptic filters are equiripple in both the passband and stopband. They offer 
steeper rolloff characteristics than Butterworth and Chebyshev filters, but 
they are equiripple in both the passband and the stopband. Of the four classical 
filter types, elliptic filters usually meet a given set of filter performance 
specifications with the lowest filter order.

ellip sets the cutoff frequency of the elliptic filter to 1 for a normalized 
result. The cutoff frequency is the frequency at which the passband ends and 
the filter has a magnitude response of 10-Rp/20.

Algorithm ellipap uses the algorithm outlined in [1]. It employs the M-file ellipk to 
calculate the complete elliptic integral of the first kind and the M-file ellipj 
to calculate Jacobi elliptic functions.

See Also

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Chapter 7.
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besselap Bessel analog lowpass filter prototype.

buttap Butterworth analog lowpass filter prototype.

cheb1ap Chebyshev type I analog lowpass filter prototype.

cheb2ap Chebyshev type II analog lowpass filter prototype.

ellip Elliptic (Cauer) filter design.
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6ellipordPurpose Elliptic filter order selection.

Syntax [n,Wn] = ellipord(Wp,Ws,Rp,Rs)
[n,Wn] = ellipord(Wp,Ws,Rp,Rs,'s')

Description ellipord selects the minimum order digital or analog elliptic filter required to 
meet a set of lowpass filter design specifications:

Digital Domain

[n,Wn] = ellipord(Wp,Ws,Rp,Rs) returns the order n of the lowest order 
elliptic filter that loses no more than Rp dB in the passband and has at least 
Rs dB of attenuation in the stopband. The passband runs from 0 to Wp and the 
stopband extends from Ws to 1, the Nyquist frequency. ellipord also returns 
Wn, the cutoff frequency that allows ellip to achieve the given specifications. 

Use ellipord for lowpass, highpass, bandpass, and bandstop filters. For 
highpass filters, Wp is greater than Ws. For bandpass and bandstop filters, Wp 
and Ws are two-element vectors that specify the corner frequencies at both 
edges of the filter, lower frequency edge first. For the band filters, ellipord 
returns Wn as a two-element row vector for input to ellip.

If filter specifications call for a bandpass or bandstop filter with unequal ripple 
in each of the passbands or stopbands, design the filter as separate lowpass and 
highpass sections and cascade the two filters together.

Wp Passband corner frequency. Wp, the cutoff frequency, has a value 
between 0 and 1, where 1 corresponds to half the sampling 
frequency (the Nyquist frequency).

Ws Stopband corner frequency. Ws is in the same units as Wp; it has a 
value between 0 and 1, where 1 corresponds to half the sampling 
frequency (the Nyquist frequency).

Rp Passband ripple, in decibels. This value is the maximum 
permissible passband loss in decibels. The passband is 0 < w < Wp.

Rs Stopband attenuation, in decibels. This value is the number of 
decibels the stopband is down from the passband. The stopband 
is Ws < w < 1.
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Analog Domain

[n,Wn] = ellipord(Wp,Ws,Rp,Rs,'s') finds the minimum order n and cutoff 
frequencies Wn for an analog filter. In this case the frequencies in Wp and Ws are 
in radians per second and may be greater than 1.

Use ellipord for lowpass, highpass, bandpass, and bandstop filters as 
described under “Digital Domain.”
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Examples For 1000 Hz data, design a lowpass filter with less than 3 dB of attenuation 
from 0 to 100 Hz and at least 15 dB of attenuation from 150 Hz to the Nyquist 
frequency:

Wp = 100/500; Ws = 150/500;
Rp = 3; Rs = 15;
[n,Wn] = ellipord(Wp,Ws,Rp,Rs)

n =
     2

Wn =
    0.2000

[b,a] = ellip(n,Rp,Rs,Wn);
freqz(b,a,512,1000)
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Now design a bandpass filter with a passband from 100 Hz to 200 Hz, less than 
3 dB of ripple throughout the passband, and 30 dB stopbands 50 Hz out on both 
sides of the passband:

Wp = [100 200]/500; Ws = [50 250]/500;
Rp = 3; Rs = 30;
[n,Wn] = ellipord(Wp,Ws,Rp,Rs)

n =
     3

Wn =
    0.2000    0.4000

[b,a] = ellip(n,Rp,Rs,Wn);
freqz(b,a,512,1000)

Algorithm ellipord uses the elliptic lowpass filter order prediction formula described in 
[1]. The function performs its calculations in the analog domain for both the 
analog and digital cases. For the digital case, it converts the frequency 
parameters to the s-domain before the order and natural frequency estimation 
process, then converts them back to the z-domain.
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ellipord initially develops a lowpass filter prototype by transforming the 
passband frequencies of the desired filter to 1 rad/sec (for low- and highpass 
filters) and to -1 and 1 rad/sec (for bandpass and bandstop filters). It then 
computes the minimum order required for a lowpass filter to meet the stopband 
specification.

See Also

References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975. Pg. 241.

buttord Butterworth filter order selection.

cheb1ord Chebyshev type I filter order selection.

cheb2ord Chebyshev type II filter order selection.

ellip Elliptic (Cauer) filter design.
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6fftPurpose One-dimensional fast Fourier transform.

Syntax y = fft(x)
y = fft(x,n)

Description fft computes the discrete Fourier transform of a vector or matrix. This 
function implements the transform given by

where WN = e-j(2π/N) and N = length(x). Note that the series is indexed as 
n + 1 and k + 1 instead of the usual n and k because MATLAB vectors run from 
1 to N instead of from 0 to N-1.

y = fft(x) is the discrete Fourier transform of vector x, computed with a fast 
Fourier transform (FFT) algorithm. If x is a matrix, y is the FFT of each column 
of the matrix. The fft function employs a radix-2 fast Fourier transform 
algorithm if the length of the sequence is a power of two, and a slower 
algorithm if it is not; see the “Algorithm” section for details.

y = fft(x,n) is the n-point FFT. If the length of x is less than n, fft pads x 
with trailing zeros to length n. If the length of x is greater than n, fft truncates 
the sequence x. If x is an array, fft adjusts the length of the columns in the 
same manner.

fft is part of the standard MATLAB environment.

Example A common use of the Fourier transform is to find the frequency components of 
a time-domain signal buried in noise. Consider data sampled at 1000 Hz. Form 

X k x n WN
kn

n

N
( ) ( )+ = +

=

−
∑1 1

0

1
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a signal consisting of 50 Hz and 120 Hz sinusoids and corrupt the signal with 
zero-mean random noise:

t = 0:0.001:0.6;
x = sin(2*pi*50*t) + sin(2*pi*120*t);
y = x + 2*randn(1,length(t));
plot(y(1:50))

It is difficult to identify the frequency components by studying the original 
signal. Convert to the frequency domain by taking the discrete Fourier 
transform of the noisy signal y using a 512-point fast Fourier transform (FFT):

Y = fft(y,512);

The power spectral density, a measurement of the energy at various 
frequencies, is

Pyy = Y.*conj(Y) / 512;
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Graph the first 256 points (the other 256 points are symmetric) on a 
meaningful frequency axis:

f = 1000*(0:255)/512;
plot(f,Pyy(1:256))

See the psd function for details on calculating spectral density.

Sometimes it is useful to normalize the output of fft so that a unit sinusoid in 
the time domain corresponds to unit amplitude in the frequency domain. To 
produce a normalized discrete-time Fourier transform in this manner, use

Pn = abs(fft(x))*2/length(x)

Algorithm fft is a built-in MATLAB function. When the sequence length is a power of 
two, fft uses a high-speed radix-2 fast Fourier transform algorithm. The 
radix-2 FFT routine is optimized to perform a real FFT if the input sequence is 
purely real; otherwise it computes the complex FFT. This causes a real 
power-of-two FFT to be about 40% faster than a complex FFT of the same 
length.

When the sequence length is not an exact power of two, a separate algorithm 
finds the prime factors of the sequence length and computes the mixed-radix 
discrete Fourier transforms of the shorter sequences.
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The execution time for fft depends on the sequence length. If the length of a 
sequence has many prime factors, the function computes the FFT quickly; if 
the length has few prime factors, execution is slower. For sequences whose 
lengths are prime numbers, fft uses the raw (and slow) DFT algorithm. For 
this reason it is usually better to use power-of-two FFTs, if this is supported by 
your application. For example, on one machine a 4096-point real FFT takes 2.1 
seconds and a complex FFT of the same length takes 3.7 seconds. The FFTs of 
neighboring sequences of length 4095 and 4097, however, take 7 seconds and 
58 seconds, respectively.

Suppose a sequence x of N points is obtained at a sample frequency of . Then, 
for up to the Nyquist frequency, or point n = N/2 + 1, the relationship between 
the actual frequency and the index k into x (out of N possible indices) is

See Also

f s

f k f Ns= − ∗( ) /1

dct Discrete cosine transform (DCT).

dftmtx Discrete Fourier transform matrix.

fft2 Two-dimensional fast Fourier transform.

fftshift Rearrange the outputs of fft and fft2.

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

freqz Frequency response of digital filters.

ifft One-dimensional inverse fast Fourier transform.

psd Estimate the power spectral density (PSD) of a signal 
using Welch’s method.
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6fft2Purpose Two-dimensional fast Fourier transform.

Syntax Y = fft2(X)
Y = fft2(X,m,n)

Description Y = fft2(X) performs a two-dimensional FFT, producing a result Y the same 
size as X. If X is a vector, Y has the same orientation as X.

Y = fft2(X,m,n) truncates or zero pads X, if necessary, to create an m-by-n 
array before performing the FFT. The result Y is also m-by-n.

fft2 is part of the standard MATLAB environment.

Algorithm fft2(x) is simply

fft(fft(x).').'

This computes the one-dimensional fft of each column of x, then of each row 
of the result. The time required to compute fft2(x) depends on the number of 
prime factors in [m,n] = size(x). fft2 is fastest when m and n are powers of 2.

See Also fft One-dimensional fast Fourier transform.

fftshift Rearrange the outputs of fft and fft2.

ifft One-dimensional inverse fast Fourier transform.

ifft2 Two-dimensional inverse fast Fourier transform.
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6fftfiltPurpose FFT-based FIR filtering using the overlap-add method.

Syntax y = fftfilt(b,x)
y = fftfilt(b,x,n)

Description fftfilt filters data using the efficient FFT-based method of overlap-add, a 
frequency domain filtering technique that works only for FIR filters.

y = fftfilt(b,x) filters the data in vector x with the filter described by 
coefficient vector b. It returns the data vector y. The operation performed by 
fftfilt is described in the time domain by the difference equation

An equivalent representation is the z-transform or frequency domain description

By default, fftfilt chooses an FFT length and data block length that 
guarantee efficient execution time.

y = fftfilt(b,x,n) uses an FFT length of nfft = 2^nextpow2(n) and a data 
block length of nfft – length(b) + 1.

fftfilt works for both real and complex inputs.

Example Show that the results from fftfilt and filter are identical:

b = [1 2 3 4];
x = [1 zeros(1,99)]';
norm(fftfilt(b,x) – filter(b,1,x))

ans = 
    9.5914e–15

Algorithm fftfilt uses fft to implement the overlap-add method [1], a technique that 
combines successive frequency domain filtered blocks of an input sequence. 
fftfilt breaks an input sequence x into length L data blocks:

y n b x n b x n b nb x n nb( ) ( ) ( ) ( ) ( ) ( ) ( )= + − + + + −1 2 1 1L

  Y z b b z b nb z X znb( ) ( ( ) ( ) ( ) ) ( )= + + + +− −1 2 11 L

x
L 2L 3L ceil(nx/L)*L

.  .  .
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and convolves each block with the filter b by

y = ifft(fft(x(i:i+L–1),nfft).*fft(b,nfft));

where nfft is the FFT length. fftfilt overlaps successive output sections by 
nb–1 points, where nb is the length of the filter, and sums them:

fftfilt chooses the key parameters L and nfft in different ways, depending 
on whether you supply an FFT length n and on the lengths of the filter and 
signal. If you do not specify a value for n (which determines FFT length), 
fftfilt chooses these key parameters automatically:

• If length(x) > length(b), fftfilt chooses values that minimize the 
number of blocks times the number of flops per FFT.

• If length(b) >= length(x), fftfilt uses a single FFT of length

2^nextpow2(length(b) + length(x) – 1)

This essentially computes
y = ifft(fft(B,nfft).*fft(X,nfft))

If you supply a value for n, fftfilt chooses an FFT length, nfft, of 
2^nextpow2(n)and a data block length of nfft – length(b) + 1. If n is less 
than length(b), fftfilt sets n to length(b).

See Also

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 1989.

nb–1L

nb–12L

nb–13L
.  .  .

conv Convolution and polynomial multiplication.

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

filtfilt Zero-phase digital filtering.
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6fftshiftPurpose Rearrange the outputs of the FFT functions.

Syntax y = fftshift(x)

Description y = fftshift(x) rearranges the outputs of fft and fft2 by moving the zero 
frequency component to the center of the spectrum, which is sometimes a more 
convenient form.

For vectors, fftshift(x) returns a vector with the left and right halves 
swapped.

For arrays, fftshift(x) swaps quadrants one and three with quadrants two 
and four.

This function is part of the standard MATLAB environment.

Example For any array X,

Y = fft2(x)

has Y(1,1) = sum(sum(X)); the DC component of the signal is in the upper-left 
corner of the two-dimensional FFT. For 

Z = fftshift(Y)

the DC component is near the center of the matrix.

See Also fft One-dimensional fast Fourier transform.

fft2 Two-dimensional fast Fourier transform.
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6filterPurpose Filter data with a recursive (IIR) or nonrecursive (FIR) filter.

Syntax y = filter(b,a,x)
[y,zf] = filter(b,a,x)
[...] = filter(b,a,x,zi)
[...] = filter(b,a,x,zi,dim)

Description filter is part of the MATLAB environment. It filters data using a digital filter. 
The filter realization is the transposed direct form II structure [1], which can 
handle both FIR and IIR filters.

If a(1) ≠ 1, filter normalizes the filter coefficients by a(1). If a(1) = 0, the input 
is in error.

y = filter(b,a,x) filters the data in vector x with the filter described by 
coefficient vectors a and b to create the filtered data vector y. When x is a 
matrix, filter operates on the columns of x. When x is an N-dimensional array, 
filter operates on the first non-singleton dimension.

[y,zf] = filter(b,a,x) returns the final values of the states in the vector 
zf.

[...] = filter(b,a,x,zi) specifies initial state conditions in the vector zi.

The size of the initial/final condition vector is max(length(b),length(a))–1. 
zi or zf can also be an array of such vectors, one for each column of x if x is a 
matrix. If x is a multidimensional array, filter works across the first 
nonsingleton dimension of x by default.

[...] = filter(b,a,x,zi,dim) works across the dimension dim of x. Set zi 
to empty to get the default initial conditions.

filter works for both real and complex inputs.
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Example Find and graph the 100-point unit impulse response of a digital filter:

x = [1 zeros(1,100)];
[b,a] = butter(12,400/1000);
y = filter(b,a,x);
stem(y)

Algorithm filter is a built-in MATLAB function. filter is implemented as a transposed 
direct form II structure

where n-1 is the filter order. 
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The operation of filter at sample m is given by the time domain difference 
equations for y and the states zi:

You can use filtic to generate the state vector zi(0) from past inputs and 
outputs.

The input-output description of this filtering operation in the z-transform 
domain is a rational transfer function:

Diagnostics If a(1) = 0, filter gives the following error message:

First denominator coefficient must be nonzero.

If the length of the initial condition vector is not the greater of na and nb, 
filter gives the following error message:

Initial condition vector has incorrect dimensions.

See Also

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 1989. Pgs. 311-312.
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fftfilt FFT-based FIR filtering using the overlap-add 
method.

filter2 Two-dimensional digital filtering.

filtfilt Zero-phase digital filtering.

filtic Make initial conditions for filter function.
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6filter2Purpose Two-dimensional digital filtering.

 Syntax Y = filter2(B,X)
Y = filter2(B,X,'shape')

Description Y = filter2(B,X) filters the two-dimensional data in X with the 
two-dimensional FIR filter in the matrix B. The result, Y, is computed using 
two-dimensional convolution and is the same size as X.

Y = filter2(B,X,'shape') returns Y computed with size specified by shape:

• same returns the central part of the convolution that is the same size as X 
(default).

• full returns the full two-dimensional convolution, size(Y) > size(X).

• valid returns only those parts of the convolution that are computed without 
the zero-padded edges, size(Y) < size(X).

Algorithm filter2 is part of the MATLAB environment. It uses conv2 to compute the full 
two-dimensional convolution of the FIR filter with the input matrix. By 
default, filter2 extracts and returns the central part of the convolution that 
is the same size as the input matrix. Use the shape parameter to specify an 
alternate part of the convolution for return.

See Also conv2 Two-dimensional convolution.

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.
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6filtfiltPurpose Zero-phase digital filtering.

Syntax y = filtfilt(b,a,x)

Description y = filtfilt(b,a,x) performs zero-phase digital filtering by processing the 
input data in both the forward and reverse directions (see problem 5.39 in [1]). 
After filtering in the forward direction, it reverses the filtered sequence and 
runs it back through the filter. The resulting sequence has precisely zero-phase 
distortion and double the filter order. filtfilt minimizes start-up and ending 
transients by matching initial conditions, and works for both real and complex 
inputs. 

Note that filtfilt should not be used with differentiator and Hilbert FIR 
filters, since the operation of these filters depends heavily on their phase 
response.

Algorithm filtfilt is an M-file that uses the filter function. In addition to the 
forward-reverse filtering, it attempts to minimize startup transients by 
adjusting initial conditions to match the DC component of the signal and by 
prepending several filter lengths of a flipped, reflected copy of the input signal.

See Also

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 1989. Pgs. 311-312.

fftfilt FFT-based FIR filtering using the overlap-add 
method.

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

filter2 Two-dimensional digital filtering.
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6filticPurpose Find initial conditions for a transposed direct form II filter implementation.

Syntax z = filtic(b,a,y,x)
z = filtic(b,a,y)

Description z = filtic(b,a,y,x) finds the initial conditions z for the delays in the 
transposed direct form II filter implementation given past outputs y and inputs 
x. The vectors b and a represent the numerator and denominator coefficients, 
respectively, of the filter’s transfer function.

The vectors x and y contain the most recent input or output first, and oldest 
input or output last:

where nb is length(b)–1 (the numerator order) and na is length(a)–1 (the 
denominator order). If length(x) is less than nb, filtic pads it with zeros to 
length nb; if length(y) is less than na, filtic pads it with zeros to length na. 
Elements of x beyond x(nb–1) and elements of y beyond y(na–1) are 
unnecessary so filtic ignores them.

Output z is a column vector of length equal to the larger of nb and na. 
z describes the state of the delays given past inputs x and past outputs y.

z = filtic(b,a,y) assumes that the input x is 0 in the past.

The transposed direct form II structure is

where n-1 is the filter order. 

filtic works for both real and complex inputs.
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Algorithm filtic performs a reverse difference equation to obtain the delay states z.

Diagnostics If any of the input arguments y, x, b, or a is not a vector (that is, if any 
argument is a scalar or array), filtic gives the following error message:

Requires vector inputs.

See Also

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 1989. Pgs. 296, 301-302.

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

filtfilt Zero-phase digital filtering.
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6fir1Purpose Window-based finite impulse response filter design—standard response.

Syntax b = fir1(n,Wn)
b = fir1(n,Wn,'ftype')
b = fir1(n,Wn,window)
b = fir1(n,Wn,'ftype',window)
b = fir1(...,'noscale')

Description fir1 implements the classical method of windowed linear-phase FIR digital 
filter design [1]. It designs filters in standard lowpass, bandpass, highpass, and 
bandpass configurations. (For windowed filters with arbitrary frequency 
response, use fir2.)

b = fir1(n,Wn) returns row vector b containing the n + 1 coefficients of an 
order n lowpass FIR filter. This is a Hamming-windowed, linear-phase filter 
with cutoff frequency Wn. The output filter coefficients, b, are ordered in 
descending powers of z:

Wn, the cutoff frequency, is a number between 0 and 1, where 1 corresponds to 
half the sampling frequency (the Nyquist frequency).

If Wn is a two-element vector, Wn = [w1 w2], fir1 returns a bandpass filter with 
passband w1 <  < w2. 

If Wn is a multi-element vector, Wn = [w1 w2 w3 w4 w5 ... wn], fir1 returns 
an order n multiband filter with bands 0 < w < w1, w1 < w < w2, ..., wn < w < 1.

By default, the filter is scaled so that the center of the first passband has 
magnitude exactly 1 after windowing.

b = fir1(n,Wn,'ftype') specifies a filter type, where ftype is

• high for a highpass filter with cutoff frequency Wn

• stop for a bandstop filter, if Wn = [w1 w2]

The stopband is w1 <  < w2. 

• 'DC-1' to make the first band of a multiband filter a passband

• 'DC-0' to make the first band of a multiband filter a stopband

  b z b b z b n z n( ) ( ) ( ) ( )= + + + +− −1 2 11 L

ω

ω
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fir1 always uses an even filter order for the highpass and bandstop 
configurations. This is because for odd orders, the frequency response at the 
Nyquist frequency is 0, which is inappropriate for highpass and bandstop 
filters. If you specify an odd-valued n, fir1 increments it by 1.

b = fir1(n,Wn,window) uses the window specified in column vector window 
for the design. The vector window must be n+1 elements long. If no window is 
specified, fir1 employs a Hamming window.

b = fir1(n,Wn,'ftype',window) accepts both ftype and window 
parameters.

b = fir1(...,'noscale') turns off the default scaling.

The group delay of the FIR filter designed by fir1 is n/2.

Algorithm fir1 uses the window method of FIR filter design [1]. If w(n) denotes a window, 
where 1 ≤ n ≤ N, and the impulse response of the ideal filter is h(n), where 
h(n) is the inverse Fourier transform of the ideal frequency response, then the 
windowed digital filter coefficients are given by

b n w n h n n N( ) ( ) ( ),= ≤ ≤    1
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Examples Design a 48th-order FIR bandpass filter with passband 0.35 ≤ w ≤ 0.65:

b = fir1(48,[0.35 0.65]);
freqz(b,1,512)

Design a 34th order FIR highpass filter with a cutoff frequency of 0.48, using a 
Chebyshev window with 30 dB of ripple:

b = fir1(34,0.48,'high',chebwin(35,30));
xfilt = filter(b,1,x);

Diagnostics If n is odd and you specify a bandstop or highpass filter, fir1 gives the 
following warning message:

For highpass and bandstop filters, N must be even.
Order is being increased by 1.
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See Also

References [1] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John 
Wiley & Sons, 1979. Algorithm 5.2.

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

fir2 Window-based finite impulse response filter 
design—arbitrary response.

fircls Constrained least square FIR filter design for 
multiband filters.

fircls1 Constrained least square filter design for lowpass 
and highpass linear phase FIR filters.

firls Least square linear-phase FIR filter design.

freqz Frequency response of digital filters.

kaiserord Estimate parameters for fir1 with Kaiser window.

remez Parks-McClellan optimal FIR filter design.
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6fir2Purpose Window-based finite impulse response filter design—arbitrary response.

Syntax b = fir2(n,f,m)
b = fir2(n,f,m,window)
b = fir2(n,f,m,npt)
b = fir2(n,f,m,npt,window)
b = fir2(n,f,m,npt,lap)
b = fir2(n,f,m,npt,lap,window)

Description fir2 designs windowed digital FIR filters with arbitrarily shaped frequency 
response. (For standard lowpass, bandpass, highpass, and bandstop 
configurations, use fir1.)

b = fir2(n,f,m) returns row vector b containing the n+1 coefficients of an 
order n FIR filter. The frequency-magnitude characteristics of this filter match 
those given by vectors f and m:

• f is a vector of frequency points in the range from 0 to 1, where 1 corresponds 
to half the sampling frequency (the Nyquist frequency). The first point of f 
must be 0 and the last point 1. The frequency points must be in increasing 
order.

• m is a vector containing the desired magnitude response at the points 
specified in f.

• f and m must be the same length.

• Duplicate frequency points are allowed, corresponding to steps in the 
frequency response.

Use plot(f,m) to view the filter shape.

The output filter coefficients, b, are ordered in descending powers of z:

b = fir2(n,f,m,window) uses the window specified in column vector window 
for the filter design. The vector window must be n+1 elements long. If no window 
is specified, fir2 employs a Hamming window.

b z b b z b n z n( ) ( ) ( ) ( )= + + + +− −1 2 11 L
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b = fir2(n,f,m,npt) and

b = fir2(n,f,m,npt, window) specify the number of points npt for the grid 
onto which fir2 interpolates the frequency response, with or without a window 
specification.

b = fir2(n,f,m,npt,lap) and

b = fir2(n,f,m,npt,lap,window) specify the size of the region, lap, that 
fir2 inserts around duplicate frequency points, with or without a window 
specification.

See the “Algorithm” section for more on npt and lap.

Algorithm The desired frequency response is interpolated onto a dense, evenly spaced grid 
of length npt. npt is 512 by default. If two successive values of f are the same, 
a region of lap points is set up around this frequency to provide a smooth but 
steep transition in the requested frequency response. By default, lap is 25. The 
filter coefficients are obtained by applying an inverse fast Fourier transform to 
the grid and multiplying by a window; by default, this is a Hamming window.
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Example Design a 30th-order lowpass filter and overplot the desired frequency response 
with the actual frequency response:

f = [0 0.6 0.6 1]; m = [1 1 0 0];
b = fir2(30,f,m);
[h,w] = freqz(b,1,128);
plot(f,m,w/pi,abs(h))

See Also
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butter Butterworth analog and digital filter design.

cheby1 Chebyshev type I filter design (passband ripple).

cheby2 Chebyshev type II filter design (stopband ripple).

ellip Elliptic (Cauer) filter design.

fir1 Window-based finite impulse response filter design—
standard response.

maxflat Generalized digital Butterworth filter design.

remez Parks-McClellan optimal FIR filter design.

yulewalk Recursive digital filter design.
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6firclsPurpose Constrained least square FIR filter design for multiband filters.

Syntax b = fircls(n,f,amp,up,lo)
fircls(n,f,amp,up,lo,'design_flag')

Description b = fircls(n,f,amp,up,lo) generates a length n+1 linear phase FIR filter b. 
The frequency-magnitude characteristics of this filter match those given by 
vectors f and amp:

• f is a vector of transition frequencies in the range from 0 to 1, where 1 
corresponds to half the sampling frequency (the Nyquist frequency). The 
first point of f must be 0 and the last point 1. The frequency points must be 
in increasing order.

• amp is a vector describing the piecewise constant desired amplitude of the 
frequency response. The length of amp is equal to the number of bands in the 
response and should be equal to length(f)–1.

• up and lo are vectors with the same length as amp. They define the upper and 
lower bounds for the frequency response in each band.

fircls(n,f,amp,up,lo,'design_flag') enables you to monitor the filter 
design, where design_flag can be

• trace, for a textual display of the design table used in the design

• plots, for plots of the filter’s magnitude, group delay, and zeros and poles

• both, for both the textual display and plots
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Example Design an order 50 bandpass filter:

n = 50;
f = [0 0.4 0.8 1];
amp = [0 1 0];
up = [0.02 1.02 0.01];
lo = [–0.02 0.98 –0.01];
b = fircls(n,f,amp,up,lo,'plots') %plots magnitude response

NOTE  Normally, the lower value in the stopband will be specified as negative. 
By setting lo equal to 0 in the stopbands, a nonnegative frequency response 
amplitude can be obtained. Such filters can be spectrally factored to obtain 
minimum phase filters.

Algorithm The algorithm is a multiple exchange algorithm that uses Lagrange 
multipliers and Kuhn-Tucker conditions on each iteration.
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See Also

References [1] Selesnick, I.W., M. Lang, and C.S. Burrus. “Constrained Least Square 
Design of FIR Filters without Specified Transition Bands.” Proceedings of the 
IEEE Int. Conf. Acoust., Speech, Signal Processing. Vol. 2 (May 1995). 
Pgs. 1260-1263.

[2] Selesnick, I.W., M. Lang, and C.S. Burrus. “Constrained Least Square 
Design of FIR Filters without Specified Transition Bands.” IEEE Transactions 
on Signal Processing, Vol. 44, No. 8 (August 1996).

fircls1 Constrained least square filter design for lowpass 
and highpass linear phase FIR filters.

firls Least square linear-phase FIR filter design.

remez Parks-McClellan optimal FIR filter design.
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6fircls1Purpose Constrained least square filter design for lowpass and highpass linear phase 
FIR filters.

Syntax b = fircls1(n,wo,dp,ds)
b = fircls1(n,wo,dp,ds,'high')
b = fircls1(n,wo,dp,ds,wt)
b = fircls1(n,wo,dp,ds,wt,'high')
b = fircls1(n,wo,dp,ds,wp,ws,k)
b = fircls1(n,wo,dp,ds,wp,ws,k,'high')
b = fircls1(n,wo,dp,ds,…,'design_flag')

Description b = fircls1(n,wo,dp,ds) generates a lowpass FIR filter b. n+1 is the filter 
length, wo is the normalized cutoff frequency in the range between 0 and 1 
(where 1 corresponds to half the sampling frequency, that is, the Nyquist 
frequency), dp is the maximum passband deviation from 1 (passband ripple), 
and ds is the maximum stopband deviation from 0 (stopband ripple).

b = fircls1(n,wo,dp,ds,'high') generates a highpass FIR filter b.

b = fircls1(n,wo,dp,ds,wt) and

b = fircls1(n,wo,dp,ds,wt,'high') specify a frequency wt above which 
(for wt>wo) or below which (for wt<wo) the filter is guaranteed to meet the given 
band criterion. This will help you design a filter that meets a passband or 
stopband edge requirement. There are four cases: 

• Lowpass: 

- 0<wt<wo<1: the amplitude of the filter is within dp of 1 over the frequency 
range 0 <  < wt. 

- 0<wo<wt<1: the amplitude of the filter is within ds of 0 over the frequency 
range wt <  < 1. 

• Highpass: 

- 0<wt<wo<1: the amplitude of the filter is within ds of 0 over the frequency 
range 0 <  < wt.     

- 0<wo<wt<1: the amplitude of the filter is within dp of 1 over the frequency 
range wt <  < 1.

ω

ω

ω

ω
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b = fircls1(n,wo,dp,ds,wp,ws,k) generates a lowpass FIR filter b with a 
weighted function. n+1 is the filter length, wo is the normalized cutoff frequency, 
dp is the maximum passband deviation from 1 (passband ripple), and ds is the 
maximum stopband deviation from 0 (stopband ripple). wp is the passband edge 
of the L2 weight function and ws is the stopband edge of the L2 weight function, 
where wp < wo < ws. k is the ratio (passband L2 error)/(stopband L2 error):

b = fircls1(n,wo,dp,ds,wp,ws,k,'high') generates a highpass FIR filter b 
with a weighted function, where ws < wo < wp.

b = fircls1(n,wo,dp,ds,…,'design_flag') enables you to monitor the 
filter design, where design_flag can be

• trace, for a textual display of the design table used in the design

• plots, for plots of the filter’s magnitude, group delay, and zeros and poles

• both, for both the textual display and plots

NOTE  In the design of very narrow band filters with small dp and ds, there 
may not exist a filter of the given length that meets the specifications.
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Example Design an order 55 lowpass filter with a cutoff frequency at 0.3:

n = 55; wo = 0.3;
dp = 0.02; ds = 0.008;
b = fircls1(n,wo,dp,ds,'plots'); % plot magnitude response

Algorithm The algorithm is a multiple exchange algorithm that uses Lagrange 
multipliers and Kuhn-Tucker conditions on each iteration.

See Also

References [1] Selesnick, I.W., M. Lang, and C.S. Burrus. “Constrained Least Square 
Design of FIR Filters without Specified Transition Bands.” Proceedings of the 
IEEE Int. Conf. Acoust., Speech, Signal Processing. Vol. 2 (May 1995). 
Pgs. 1260-1263.

[2] Selesnick, I.W., M. Lang, and C.S. Burrus. “Constrained Least Square 
Design of FIR Filters without Specified Transition Bands.” IEEE Transactions 
on Signal Processing, Vol. 44, No. 8 (August 1996).
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fircls Constrained least square FIR filter design for 
multiband filters.

firls Least square linear-phase FIR filter design.

remez Parks-McClellan optimal FIR filter design.
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6firlsPurpose Least square linear-phase FIR filter design.

Syntax b = firls(n,f,a)
b = firls(n,f,a,w)
b = firls(n,f,a,'ftype')
b = firls(n,f,a,w,'ftype')

Description firls designs a linear-phase FIR filter that minimizes the weighted, 
integrated squared error between an ideal piecewise linear function and the 
magnitude response of the filter over a set of desired frequency bands.

b = firls(n,f,a) returns row vector b containing the n+1 coefficients of the 
order n FIR filter whose frequency-amplitude characteristics approximately 
match those given by vectors f and a. The output filter coefficients, or “taps,” 
in b obey the symmetry relation

These are type I (n odd) and type II (n even) linear-phase filters. Vectors f and 
a specify the frequency-amplitude characteristics of the filter:

• f is a vector of pairs of frequency points, specified in the range between 0 and 
1, where 1 corresponds to half the sampling frequency (the Nyquist 
frequency). The frequencies must be in increasing order. Duplicate frequency 
points are allowed and, in fact, can be used to design a filter exactly the same 
as those returned by the fir1 and fir2 functions with a rectangular or 
boxcar window.

• a is a vector containing the desired amplitude at the points specified in f. 

The desired amplitude function at frequencies between pairs of points (f(k), 
f(k+1)) for k odd is the line segment connecting the points (f(k), a(k)) and 
(f(k+1), a(k+1)).

The desired amplitude function at frequencies between pairs of points (f(k), 
f(k+1)) for k even is unspecified. These are transition or “don’t care” regions.

• f and a are the same length. This length must be an even number.

  b k b n k k n( ) ( ), , ,= + − = +2 1 1      K
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The relationship between the f and a vectors in defining a desired amplitude 
response is

b = firls(n,f,a,w) uses the weights in vector w to weight the fit in each 
frequency band. The length of w is half the length of f and a, so there is exactly 
one weight per band.

b = firls(n,f,a,'ftype') and 

b = firls(n,f,a,w,'ftype') specify a filter type, where ftype is

• hilbert for linear-phase filters with odd symmetry (type III and type IV)

The output coefficients in b obey the relation b(k) = -b(n + 2 - k), 
k = 1, ..., n + 1. This class of filters includes the Hilbert transformer, which 
has a desired amplitude of 1 across the entire band.

• differentiator for type III and type IV filters, using a special weighting 
technique

For nonzero amplitude bands, the integrated squared error has a weight of 
(1/f)2 so that the error at low frequencies is much smaller than at high 
frequencies. For FIR differentiators, which have an amplitude characteristic 
proportional to frequency, the filters minimize the relative integrated 
squared error (the integral of the square of the ratio of the error to the 
desired amplitude).
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Examples Design an order 255 lowpass filter with transition band:

b = firls(255,[0 0.25 0.3 1],[1 1 0 0]);

Design a 31 coefficient differentiator:

b = firls(30,[0 0.9],[0 0.9],'differentiator');

Design a 24th-order anti-symmetric filter with piecewise linear passbands and 
plot the desired and actual frequency response:

F = [0 0.3  0.4 0.6  0.7 0.9]; 
A = [0  1   0  0  0.5 0.5];
b = firls(24,F,A,'hilbert');
for i=1:2:6, 
   plot([F(i) F(i+1)],[A(i) A(i+1)],'– –'), hold on
end
[H,f] = freqz(b,1,512,2);
plot(f,abs(H)), grid on, hold off

Algorithm Reference [1] describes the theoretical approach that firls takes. The function 
solves a system of linear equations involving an inner product matrix of size 
roughly n/2 using MATLAB’s \ operator.
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This function designs type I, II, III, and IV linear-phase filters. Type I and II 
are the defaults for n even and odd respectively, while the 'hilbert' and 
'differentiator' flags produce type III (n even) and IV (n odd) filters. The 
various filter types have different symmetries and constraints on their 
frequency responses (see [2] for details).

Diagnostics An appropriate diagnostic message is displayed when incorrect arguments are 
used:

F must be even length.
F and A must be equal lengths.
Requires symmetry to be 'hilbert' or 'differentiator'.
Requires one weight per band.
Frequencies in F must be nondecreasing.
Frequencies in F must be in range [0,1].

A more serious warning message is

Warning: Matrix is close to singular or badly scaled.

This tends to happen when the filter length times the transition width grows 
large. In this case, the filter coefficients b might not represent the desired filter. 
You can check the filter by looking at its frequency response.

Linear 
Phase 
Filter type

Filter 
Order n Symmetry of Coefficients

Response H(f), 
f = 0

Response H(f), 
f = 1 (Nyquist)

Type I Even even: No restriction No restriction

Type II Odd No restriction H(1) = 0

Type III Even odd: H(0) = 0 H(1) = 0

Type IV Odd H(0) = 0 No restriction

  b k b n k k n( ) ( ), , ,= + − = +2 1 1  K

  b k b n k k n( ) ( ), , ,= − + − = +2 1 1  K
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See Also

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Pgs. 54-83.

[2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 1989. Pgs. 256-266.

fir1 Window-based finite impulse response filter design—
standard response.

fir2 Window-based finite impulse response filter design—
arbitrary response.

firrcos Raised cosine FIR filter design.

remez Parks-McClellan optimal FIR filter design.
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6firrcosPurpose Raised cosine FIR filter design.

b = firrcos(n,F0,df,Fs)
b = firrcos(n,F0,df)

Description firrcos(n,F0,df,Fs) returns an order n lowpass linear-phase FIR filter with 
a raised cosine transition band. The filter has cutoff frequency F0, transition 
width df, and sampling frequency Fs, all in Hertz. F0 must be between 0 and 
Fs/2. df must be small enough so that F0 ± df/2 is between 0 and Fs/2. The 
filter order n must be even.

firrcos(n,F0,df) uses a default sampling frequency of Fs = 2.

Example Design an order 20 raised cosine FIR filter with cutoff frequency 0.25 of the 
Nyquist frequency and a transition width of 0.25:

h = firrcos(20,0.25,0.25);
H = fft(h,1024);
plot((0:1023)/1024*2,abs(H)),axis([0 1 0 1.2]),grid

Remarks firrcos minimizes the integral squared error in the frequency domain.

See Also
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6freqsPurpose Frequency response of analog filters.

Syntax h = freqs(b,a,w)
[h,w] = freqs(b,a)
[h,w] = freqs(b,a,n)
freqs(b,a)

Description freqs returns the complex frequency response H(jw) (Laplace transform) of an 
analog filter:

given the numerator and denominator coefficients in vectors b and a. 

h = freqs(b,a,w) returns the complex frequency response of the analog filter 
specified by coefficient vectors b and a. freqs evaluates the frequency response 
along the imaginary axis in the complex plane at the frequencies specified in 
real vector w.

[h,w] = freqs(b,a) automatically picks a set of 200 frequency points w on 
which to compute the frequency response h. 

[h,w] = freqs(b,a,n) picks n frequencies on which to compute the frequency 
response h.

freqs with no output arguments plots the magnitude and phase response 
versus frequency in the current figure window.

freqs works only for real input systems and positive frequencies.
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Example Find and graph the frequency response of the transfer function given by

a = [1 0.4 1];
b = [0.2 0.3 1];
w = logspace(–1,1);
freqs(b,a,w)

You can also create the plot with

h = freqs(b,a,w);
mag = abs(h);
phase = angle(h);
subplot(2,1,1), loglog(w,mag)
subplot(2,1,2), semilogx(w,phase)

To convert to Hertz, degrees, and decibels, use

f = w/(2*pi);
mag = 20*log10(mag);
phase = phase*180/pi;
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Algorithm freqs evaluates the polynomials at each frequency point, then divides the 
numerator response by the denominator response:

s = i*w;
h = polyval(b,s)./polyval(a,s);

See Also abs Absolute value (magnitude).

angle Phase angle.

freqz Frequency response of digital filters.

invfreqs Continuous-time (analog) filter identification from 
frequency data.

logspace Generate logarithmically spaced vectors (see the 
online MATLAB Function Reference).

polyval Polynomial evaluation (see the online MATLAB 
Function Reference).
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6freqspacePurpose Frequency spacing for frequency response.

Syntax f = freqspace(n)
f = freqspace(n,'whole')
[f1,f2] = freqspace(n)
[f1,f2] = freqspace([m n])
[x1,y1] = freqspace(n,'meshgrid')
[x1,y1] = freqspace([m n],'meshgrid')

Description freqspace returns the implied frequency range for equally spaced frequency 
responses. This is useful when creating frequency vectors for use with freqz.

f = freqspace(n) returns the frequency vector f assuming n evenly spaced 
points around the unit circle. For n even or odd, f is (0:2/n:1). For n even, 
freqspace returns (n + 2)/2 points. For N odd, it returns (n + 1)/2 points.

f = freqspace(n,'whole') returns n evenly spaced points around the whole 
unit circle. In this case, f is 0:2/n:2*(n–1)/n.

[f1,f2] = freqspace(n) returns the two-dimensional frequency vectors f1 
and f2 for an n-by-n matrix. For n odd, both f1 and f2 are [–1 + 
1/n:2/n:1–1/n]. For n even, both f1 and f2 are [–1:2/n:1–2/n].

[f1,f2] = freqspace([m n]) returns the two-dimensional frequency vectors 
f1 and f2 for an m-by-n matrix.

[x1,y1] = freqspace(n,'meshgrid') and

[x1,y1] = freqspace([m n],'meshgrid') are equivalent to

[f1,f2] = freqspace(...);
[x1,y1] = meshgrid(f1,f2);

See the online MATLAB Function Reference for details on the meshgrid 
function.

See Also freqz Frequency response of digital filters.

invfreqz Discrete-time filter identification from frequency 
data.
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6freqzPurpose Frequency response of digital filters.

Syntax [h,w] = freqz(b,a,n)
[h,f] = freqz(b,a,n,Fs)
[h,w] = freqz(b,a,n,'whole')
[h,f] = freqz(b,a,n,'whole',Fs)
h = freqz(b,a,w)
h = freqz(b,a,f,Fs)
freqz(b,a)

Description freqz returns the complex frequency response H(ejw) of a digital filter, given 
the numerator and denominator coefficients in vectors b and a.

[h,w] = freqz(b,a,n) returns the n-point complex frequency response of the 
digital filter

given the coefficient vectors b and a. freqz returns both h, the complex 
frequency response, and w, a vector containing the n frequency points. freqz 
evaluates the frequency response at n points equally spaced around the upper 
half of the unit circle, so w contains n points between 0 and .

It is best, although not necessary, to choose a value for n that is an exact power 
of two, because this allows fast computation using an FFT algorithm. If you do 
not specify a value for n, it defaults to 512.

[h,f] = freqz(b,a,n,Fs) specifies a positive sampling frequency Fs, in 
Hertz. It returns a vector f containing the actual frequency points between 0 
and Fs/2 at which it calculated the frequency response. f is of length n. 

[h,w] = freqz(b,a,n,'whole') and 

[h,f] = freqz(b,a,n,'whole',Fs) use n points around the whole unit circle 
(from 0 to 2 , or from 0 to Fs).

h = freqz(b,a,w) returns the frequency response at the frequencies in vector 
w. These frequencies must be between 0 and 2π.

  

H z
B z

A z

b b z b nb z

a a z a na z

nb

na( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )
= = + + + +

+ + + +

− −

− −
1 2 1

1 2 1

1

1
L

L

π

π

6-160



freqz
h = freqz(b,a,f,Fs) returns the frequency response at the frequencies in 
vector f, where the elements of f are between 0 and Fs. 

freqz with no output arguments plots the magnitude and phase response 
versus frequency in the current figure window.

freqz works for both real and complex input systems.

Example Plot the magnitude and phase response of a Butterworth filter:

[b,a] = butter(5,0.2);
freqz(b,a,128)

Algorithm freqz uses an FFT algorithm when argument n is present. It computes the 
frequency response as the ratio of the transformed numerator and 
denominator coefficients, padded with zeros to the desired length:

h = fft(b,n)./fft(a,n)

If n is not a power of two, the FFT algorithm is not as efficient and may cause 
long computation times. 

When a frequency vector w or f is present, or if n is less than 
max(length(b),length(a)), freqz evaluates the polynomials at each 
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frequency point using Horner’s method of polynomial evaluation and then 
divides the numerator response by the denominator response.

See Also abs Absolute value (magnitude).

angle Phase angle.

fft One-dimensional fast Fourier transform.

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

freqs Frequency response of analog filters.

impz Impulse response of digital filters.

invfreqz Discrete-time filter identification from frequency 
data.

logspace Generate logarithmically spaced vectors (see the 
online MATLAB Function Reference).
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6gauspulsPurpose Gaussian-modulated sinusoidal pulse generator.

Syntax yi = gauspuls(t,fc,bw)
yi = gauspuls(t,fc,bw,bwr)
[yi,yq] = gauspuls(…)
[yi,yq,ye] = gauspuls(…)
tc = gauspuls('cutoff',fc,bw,bwr,tpe)

Description gauspuls generates Gaussian-modulated sinusoidal pulses.

yi = gauspuls(t,fc,bw) returns a unity-amplitude Gaussian RF pulse at 
the times indicated in array t, with a center frequency fc in Hertz and a 
fractional bandwidth bw, which must be greater than 0. The default value for 
fc is 1000 Hz and for bw is 0.5. 

yi = gauspuls(t,fc,bw,bwr) returns a unity-amplitude Gaussian RF pulse 
with a fractional bandwidth of bw as measured at a level of bwr dB with respect 
to the normalized signal peak. The fractional bandwidth reference level bwr 
must be less than 0, because it indicates a reference level less than the peak 
(unity) envelope amplitude. The default value for bwr is -6 dB. 

[yi,yq] = gauspuls(…) returns both the in-phase and quadrature pulses. 

[yi,yq,ye] = gauspuls(…) returns the RF signal envelope. 

tc = gauspuls('cutoff',fc,bw,bwr,tpe) returns the cutoff time tc 
(greater than or equal to 0) at which the trailing pulse envelope falls below 
tpe dB with respect to the peak envelope amplitude. The trailing pulse 
envelope level tpe must be less than 0, because it indicates a reference level 
less than the peak (unity) envelope amplitude. The default value for tpe is 
-60 dB. 

Remarks Default values are substituted for empty or omitted trailing input arguments.
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Example Plot a 50 kHz Gaussian RF pulse with 60% bandwidth, sampled at a rate of 
1 MHz. Truncate the pulse where the envelope falls 40 dB below the peak:

tc = gauspuls('cutoff',50e3,0.6,[],–40); 
t = –tc : 1e–6 : tc; 
yi = gauspuls(t,50e3,0.6); 
plot(t,yi)

See Also
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chirp Swept-frequency cosine generator.

cos Cosine of vector/matrix elements (see the online 
MATLAB Function Reference).

diric Dirichlet or periodic sinc function.

pulstran Pulse train generator.

rectpuls Sampled aperiodic rectangle generator.

sawtooth Sawtooth or triangle wave generator.

sin Sine of vector/matrix elements (see the online 
MATLAB Function Reference).

sinc Sinc or sin(πt)/πt function.

square Square wave generator.

tripuls Sampled aperiodic triangle generator.
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grpdelay
6grpdelayPurpose Average filter delay (group delay).

Syntax [gd,w] = grpdelay(b,a,n)
[gd,f] = grpdelay(b,a,n,Fs)
[gd,w] = grpdelay(b,a,n,'whole')
[gd,f] = grpdelay(b,a,n,'whole',Fs)
gd = grpdelay(b,a,w)
gd = grpdelay(b,a,f,Fs)
grpdelay(b,a)

Description The group delay of a filter is a measure of the average delay of the filter as a 
function of frequency. It is the negative first derivative of the phase response 
of the filter. If the complex frequency response of a filter is H(ejw), then the 
group delay is 

where  is frequency and  is the phase angle of H(ejw).

[gd,w] = grpdelay(b,a,n) returns the n-point group delay, , of the 
digital filter

given the numerator and denominator coefficients in vectors b and a. grpdelay 
returns both gd, the group delay, and w, a vector containing the n frequency 
points in radians. grpdelay evaluates the group delay at n points equally 
spaced around the upper half of the unit circle, so w contains n points between 
0 and π. A value for n that is an exact power of two allows fast computation 
using an FFT algorithm.

[gd,f] = grpdelay(b,a,n,Fs) specifies a positive sampling frequency Fs in 
Hertz. It returns a length n vector f containing the actual frequency points at 
which the group delay is calculated, also in Hertz. f contains n points between 
0 and Fs/2.
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[gd,w] = grpdelay(b,a,n,'whole') and 

[gd,f] = grpdelay(b,a,n,'whole',Fs) use n points around the whole unit 
circle (from 0 to 2π, or from 0 to Fs).

gd = grpdelay(b,a,w) and

gd = grpdelay(b,a,f,Fs) return the group delay evaluated at the points in 
w (in radians) or f (in Hertz), respectively, where Fs is the sampling frequency 
in Hertz.

grpdelay with no output arguments plots the group delay versus frequency in 
the current figure window. 

grpdelay works for both real and complex input systems.

Examples Plot the group delay of Butterworth filter b(z)/a(z):

[b,a] = butter(6,0.2);
grpdelay(b,a,128)
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Plot both the group and phase delays of a system on the same graph:

gd = grpdelay(b,a,512);
gd(1) = []; % avoid NaNs
[h,w] = freqz(b,a,512); h(1) = []; w(1) = [];
pd = –unwrap(angle(h))./w;
plot(w,gd,w,pd,':')

Algorithm grpdelay multiplies the filter coefficients by a unit ramp. After Fourier 
transformation, this process corresponds to differentiation.

See Also
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cceps Complex cepstral analysis.

fft One-dimensional fast Fourier transform.

freqz Frequency response of digital filters.

hilbert Hilbert transform.

icceps Inverse complex cepstrum.

rceps Real cepstrum and minimum phase reconstruction.
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6hammingPurpose Hamming window.

Syntax w = hamming(n)
w = hamming(n,sflag)

Description w = hamming(n) returns an n-point symmetrically sampled Hamming window 
in the column vector w. n should be a nonnegative integer. The coefficients of a 
Hamming window are

w = hamming(n,sflag) returns an n-point Hamming window using the 
window sampling specified by sflag, which can be either 'periodic' or 
'symmetric' (the default). When 'periodic' is specified, hamming computes a 
length n+1 window and returns the first n points.

Diagnostics An error message is displayed when incorrect arguments are used:

Order cannot be less than zero.
Sampling must be either 'symmetric' or 'periodic'.

A warning message is displayed for noninteger n:

Warning: Rounding order to nearest integer.

See Also

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, 1989.
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bartlett Bartlett window.

blackman Blackman window.

boxcar Rectangular window.

chebwin Chebyshev window.

hanning Hanning window.

kaiser Kaiser window.

triang Triangular window.
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6hanningPurpose  Hanning window.

Syntax w = hanning(n)
w = hanning(n,sflag)

Description w = hanning(n) returns an n-point symmetrically sampled Hanning window 
in the column vector w. n should be a nonnegative integer. The coefficients of a 
Hanning window are

w = hanning(n,sflag) returns an n-point Hanning window using the window 
sampling specified by sflag, which can be either 'periodic' or 'symmetric' 
(the default). When 'periodic' is specified, hanning computes a length n+1 
window and returns the first n points.

Diagnostics An error message is displayed when incorrect arguments are used:

Order cannot be less than zero.
Sampling must be either 'symmetric' or 'periodic'.

A warning message is displayed for noninteger n:

Warning: Rounding order to nearest integer.

See Also

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, 1989.
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hilbert
6hilbertPurpose Hilbert transform.

Syntax y = hilbert(x)

Description y = hilbert(x) returns a complex helical sequence, sometimes called the 
analytic signal, from a real data sequence. The analytic signal has a real part, 
which is the original data, and an imaginary part, which contains the Hilbert 
transform. The imaginary part is a version of the original real sequence with a 
90˚ phase shift. Sines are therefore transformed to cosines and vice versa. The 
Hilbert transformed series has the same amplitude and frequency content as 
the original real data and includes phase information that depends on the 
phase of the original data.

If x is a matrix, y = hilbert(x) operates columnwise on the matrix, finding 
the Hilbert transform of each column.

The Hilbert transform is useful in calculating instantaneous attributes of a 
time series, especially the amplitude and frequency. The instantaneous 
amplitude is the amplitude of the complex Hilbert transform; the 
instantaneous frequency is the time rate of change of the instantaneous phase 
angle. For a pure sinusoid, the instantaneous amplitude and frequency are 
constant. The instantaneous phase, however, is a sawtooth, reflecting the way 
in which the local phase angle varies linearly over a single cycle. For mixtures 
of sinusoids, the attributes are short term, or local, averages spanning no more 
than two or three points.

Reference [1] describes the Kolmogorov method for minimum phase 
reconstruction, which involves taking the Hilbert transform of the logarithm of 
the spectrum of a time series. The toolbox function rceps performs this 
reconstruction.

Algorithm The analytic signal for a sequence x has a one-sided Fourier transform, that is, 
negative frequencies are 0. To approximate the analytic signal, hilbert 
calculates the FFT of the input sequence, replaces those FFT coefficients that 
correspond to negative frequencies with zeros, and calculates the inverse FFT 
of the result.
6-170



hilbert
In detail, hilbert uses a four-step algorithm:

1 It calculates the FFT of the input sequence, storing the result in a vector y. 
Before transforming, it zero pads the input sequence so its length n is the 
closest power of two, if necessary. This ensures the most efficient FFT 
computation.

2 It creates a vector h whose elements h(i) have the values

- 1 for i = 1, (n/2) + 1

- 2 for i = 2, 3, ..., (n/2)

- 0 for i = (n/2) + 2, ... , n

3 It calculates the element-wise product of y and h.

4 It calculates the inverse FFT of the sequence obtained in step 3 and returns 
the first n elements of the result.

If the input data x is a matrix, hilbert operates in a similar manner, extending 
each step above to handle the matrix case.

See Also

References [1] Claerbout, J.F. Fundamentals of Geophysical Data Processing. New York: 
McGraw-Hill, 1976. Pgs. 59-62.

fft One-dimensional fast Fourier transform.

ifft One-dimensional inverse fast Fourier transform.

rceps Real cepstrum and minimum phase reconstruction.
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6iccepsPurpose Inverse complex cepstrum.

Syntax x = icceps(xhat,nd)

Description x = icceps(xhat,nd) returns the inverse complex cepstrum of the (assumed 
real) sequence xhat, removing nd samples of delay. If xhat was obtained with 
cceps(x), then the amount of delay that was added to x was the element of 
round(unwrap(angle(fft(x)))/pi) corresponding to π radians.

See Also

References [1] Oppenheim, A.V., and R.W. Schafer. Digital Signal Processing. Englewood 
Cliffs, NJ: Prentice Hall, 1975.

cceps Complex cepstral analysis.

hilbert Hilbert transform.

rceps Real cepstrum and minimum phase reconstruction.

unwrap Unwrap phase angles.
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idct
6idctPurpose Inverse discrete cosine transform.

Syntax x = idct(y)
x = idct(y,n)

Description The inverse discrete cosine transform reconstructs a sequence from its discrete 
cosine transform (DCT) coefficients. The idct function is the inverse of the dct 
function.

x = idct(y) returns the inverse discrete cosine transform of y

where

and N = length(x), which is the same as length(y). The series is indexed 
from n = 1 and k = 1 instead of the usual n = 0 and k = 0 because MATLAB 
vectors run from 1 to N instead of from 0 to N-1.

x = idct(y,n) appends zeros or truncates the vector y to length n before 
transforming.

If y is a matrix, idct transforms its columns.

See Also
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dct Discrete cosine transform (DCT).

dct2 Two-dimensional DCT (see Image Processing Toolbox User’s 
Guide).

idct2 Two-dimensional inverse DCT (see Image Processing Toolbox 
User’s Guide).

ifft One-dimensional inverse fast Fourier transform.
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References [1] Jain, A.K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: 
Prentice-Hall, 1989.

[2] Pennebaker, W.B., and J.L. Mitchell. JPEG Still Image Data Compression 
Standard. New York, NY: Van Nostrand Reinhold, 1993. Chapter 4.
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ifft
6ifftPurpose One-dimensional inverse fast Fourier transform.

Syntax y = ifft(x)
y = ifft(x,n)

Description ifft computes the inverse Fourier transform of a vector or array. This function 
implements the inverse transform given by

where WN = e-j(2p/N) and N = length(x). Note that the series is indexed as n + 1 
and k + 1 instead of the usual n and k because MATLAB vectors run from 1 to N 
instead of from 0 to N-1.

y = ifft(x) is the inverse Fourier transform of vector x. If x is an array, y is 
the inverse FFT of each column of the matrix.

y = ifft(x,n) is the n-point inverse FFT. If the length of x is less than n, ifft 
pads x with trailing zeros to length n. If the length of x is greater than n, ifft 
truncates the sequence x. When x is an array, ifft adjusts the length of the 
columns in the same manner.

ifft is part of the standard MATLAB environment.

Algorithm ifft is an M-file. The algorithm for ifft is the same as that for fft, except for 
a sign change and a scale factor of n = length(x). The execution time is fastest 
when n is a power of two and slowest when n is a large prime.

See Also
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fft One-dimensional fast Fourier transform.

fft2 Two-dimensional fast Fourier transform.

fftshift Rearrange the outputs of fft and fft2.

ifft2 Two-dimensional inverse fast Fourier transform.
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6ifft2Purpose Two-dimensional inverse fast Fourier transform.

Syntax Y = ifft2(X)
Y = ifft2(X,m,n)

Description Y = ifft2(X) returns the two-dimensional inverse fast Fourier transform 
(FFT) of the array X. If X is a vector, Y has the same orientation as X.

Y = ifft2(X,m,n) truncates or zero pads X, if necessary, to create an m-by-n 
array before performing the inverse FFT. The result Y is also m-by-n.

For any X, ifft2(fft2(X)) equals X to within roundoff error. If X is real, 
ifft2(fft2(X)) may have small imaginary parts.

ifft is part of the standard MATLAB environment.

Algorithm The algorithm for ifft2 is the same as that for fft2, except for a sign change 
and scale factors of [m n]= size(X). The execution time is fastest when m and 
n are powers of two and slowest when they are large primes.

ifft2 is part of the standard MATLAB environment.

See Also fft One-dimensional fast Fourier transform.

fft2 Two-dimensional fast Fourier transform.

fftn N-dimensional fast Fourier transform (see the online 
MATLAB Function Reference).

fftshift Rearrange the outputs of fft and fft2.

ifft One-dimensional inverse fast Fourier transform.

ifftn N-dimensional inverse fast Fourier transform (see 
the online MATLAB Function Reference).
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6impinvarPurpose Impulse invariance method of analog-to-digital filter conversion.

Syntax [bz,az] = impinvar(b,a,Fs)
[bz,az] = impinvar(b,a)
[bz,az] = impinvar(b,a,Fs,tol)

Description [bz,az] = impinvar(b,a,Fs) creates a digital filter with numerator and 
denominator coefficients bz and az, respectively, whose impulse response is 
equal to the impulse response of the analog filter with coefficients b and a, 
scaled by 1/Fs.

[bz,az] = impinvar(b,a) uses the default value of 1 Hz for Fs.

[bz,az] = impinvar(b,a,Fs,tol) uses the tolerance specified by tol to 
determine whether poles are repeated. A larger tolerance increases the 
likelihood that impinvar will consider nearby poles to be repeated. The default 
is 0.001, or 0.1% of a pole’s magnitude. Note that the accuracy of the pole values 
is still limited to the accuracy obtainable by the roots function.

Example Convert an analog lowpass filter to a digital filter using impinvar with a 
sampling frequency of 10 Hz:

[b,a] = butter(4,0.3,'s');
[bz,az] = impinvar(b,a,10)

bz =

  1.0e-006 *

   -0.0000    0.1324    0.5192    0.1273         0

az =

    1.0000   -3.9216    5.7679   -3.7709    0.9246
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Algorithm impinvar performs the impulse-invariant method of analog-to-digital transfer 
function conversion discussed in reference [1]:

1 It finds the partial fraction expansion of the system represented by b and a.

2 It replaces the poles p by the poles exp(p/Fs).

3 It finds the transfer function coefficients of the system from the residues 
from step 1 and the poles from step 2.

See Also

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Pgs. 206-209.

bilinear Map variables using bilinear transformation.

lp2bp Lowpass to bandpass analog filter transformation.

lp2bs Lowpass to bandstop analog filter transformation.

lp2hp Lowpass to highpass analog filter transformation.

lp2lp Lowpass to lowpass analog filter transformation.
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6impzPurpose Impulse response of digital filters.

Syntax [h,t] = impz(b,a)
[h,t] = impz(b,a,n)
[h,t] = impz(b,a,n,Fs)
impz(b,a)
impz(...)

Description [h,t] = impz(b,a) computes the impulse response of the filter with 
numerator coefficients b and denominator coefficients a. impz chooses the 
number of samples and returns the response in column vector h and times (or 
sample intervals) in column vector t (where t = (0:n–1)' and n is the 
computed impulse response length).

[h,t] = impz(b,a,n) computes n samples of the impulse response. If n is a 
vector of integers, impz computes the impulse response at those integer 
locations where 0 is the starting point of the filter.

[h,t] = impz(b,a,n,Fs) computes n samples and scales t so that samples 
are spaced 1/Fs units apart. Fs is 1 by default.

[h,t] = impz(b,a,[],Fs) chooses the number of samples for you and scales 
t so that samples are spaced 1/Fs units apart.

impz with no output arguments plots the impulse response in the current 
figure window using stem(t,h).

impz works for both real and complex input systems.
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Example Plot the first 50 samples of the impulse response of a fourth-order lowpass 
elliptic filter with cutoff frequency of 0.4 times the Nyquist frequency:

[b,a] = ellip(4,0.5,20,0.4);
impz(b,a,50)

Algorithm impz filters a length n impulse sequence using 

filter(b,a,[1 zeros(1,n–1)])

To compute n in the auto-length case, impz either uses n = length(b) for the 
FIR case or first finds the poles using p = roots(a), if length(a) is greater 
than 1.

If the filter is unstable, n is chosen to be the point at which the term from the 
largest pole reaches 10^6 times its original value.

If the filter is stable, n is chosen to be the point at which the term due to the 
largest amplitude pole is 5*10^–5 of its original amplitude.

If the filter is oscillatory (poles on the unit circle only), impz computes five 
periods of the slowest oscillation.

If the filter has both oscillatory and damped terms, n is chosen to equal five 
periods of the slowest oscillation or the point at which the term due to the 
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largest (nonunity) amplitude pole is 5*10^–5 of its original amplitude, 
whichever is greater.

impz also allows for delay in the numerator polynomial, which it adds to the 
resulting n.

See Also impulse Unit impulse response (see Control System Toolbox 
User’s Guide).

stem Plot discrete sequence data (see the online MATLAB 
Function Reference).
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6interpPurpose Increase sampling rate by an integer factor (interpolation).

Syntax y = interp(x,r)
y = interp(x,r,l,alpha)
[y,b] = interp(x,r,l,alpha)

Description Interpolation increases the original sampling rate for a sequence to a higher 
rate. interp performs lowpass interpolation by inserting zeros into the original 
sequence and then applying a special lowpass filter.

y = interp(x,r) increases the sampling rate of x by a factor of r. The 
interpolated vector y is r times longer than the original input x.

y = interp(x,r,l,alpha) specifies l (filter length) and alpha (cut-off 
frequency). The default value for l is 4 and the default value for alpha is 0.5.

[y,b] = interp(x,r,l,alpha) returns vector b containing the filter 
coefficients used for the interpolation. 

Example Interpolate a signal by a factor of four:

t = 0:0.001:1; % time vector
x = sin(2*pi*30*t) + sin(2*pi*60*t);
y = interp(x,4);
stem(x(1:30))
figure
stem(y(1:120))
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Algorithm interp uses the lowpass interpolation Algorithm 8.1 described in [1]:

1 It expands the input vector to the correct length by inserting zeros between 
the original data values.

2 It designs a special symmetric FIR filter that allows the original data to pass 
through unchanged and interpolates between so that the mean-square 
errors between the interpolated points and their ideal values are minimized.

3 It applies the filter to the input vector to produce the interpolated output 
vector.

The length of the FIR lowpass interpolating filter is 2*l*r+1. The number of 
original sample values used for interpolation is 2*l. Ordinarily, l should be 
less than or equal to 10. The original signal is assumed to be band limited with 
normalized cutoff frequency 0 ≤ alpha ≤ 1, where 1 is half the original 
sampling frequency (the Nyquist frequency). The default value for l is 4 and 
the default value for alpha is 0.5.

Diagnostics If r is not an integer, interp gives the following error message:

Resampling rate R must be an integer.

See Also

References [1] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John 
Wiley & Sons, 1979. Algorithm 8.1.

decimate Decrease the sampling rate for a sequence 
(decimation).

interp1 One-dimensional data interpolation (table lookup) 
(see the online MATLAB Function Reference).

resample Change sampling rate by any factor.

spline Cubic spline interpolation (see the online MATLAB 
Function Reference).

upfirdn Upsample, apply an FIR filter, and downsample.
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6intfiltPurpose Interpolation FIR filter design.

Syntax b = intfilt(r,l,alpha)
b = intfilt(r,n,'Lagrange')

Description b = intfilt(r,l,alpha) designs a linear phase FIR filter that performs 
ideal bandlimited interpolation using the nearest 2*l nonzero samples, when 
used on a sequence interleaved with r–1 consecutive zeros every r samples. It 
assumes an original bandlimitedness of alpha times the Nyquist frequency. 
The returned filter is identical to that used by interp.

b = intfilt(r,n,'Lagrange') or b = intfilt(r,n,'l') designs an FIR 
filter that performs nth-order Lagrange polynomial interpolation on a sequence 
interleaved with r–1 consecutive zeros every r samples. b has length (n + 1)*r 
for n even, and length (n + 1)*r–1 for n odd.

Both types of filters are basically lowpass and are intended for interpolation 
and decimation.

Examples Design a digital interpolation filter to upsample a signal by four, using the 
bandlimited method:

alpha = 0.5; % "bandlimitedness" factor
h1 = intfilt(4,2,alpha); % bandlimited interpolation

The filter h1 works best when the original signal is bandlimited to alpha times 
the Nyquist frequency. Create a bandlimited noise signal:

randn('seed',0)
x = filter(fir1(40,0.5),1,randn(200,1)); % bandlimit

Now zero pad the signal with three zeros between every sample. The resulting 
sequence is four times the length of x:

xr = reshape([x zeros(length(x),3)]',4*length(x),1);

Interpolate using the filter command:

y = filter(h1,1,xr);
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y is an interpolated version of x, delayed by seven samples (the group-delay of 
the filter). Zoom in on a section to see this:

plot(100:200,y(100:200),7+(101:4:196),x(26:49),'o')

intfilt’s other type of filter performs Lagrange polynomial interpolation of 
the original signal. For example, first-order polynomial interpolation is just 
linear interpolation, which is accomplished with a triangular filter:

h2 = intfilt(4,1,'l')   % Lagrange interpolation

h2 =
   0.2500   0.5000   0.7500   1.0000   0.7500   0.5000  0.2500

Algorithm The bandlimited method uses firls to design an interpolation FIR equivalent 
to that presented in [1]. The polynomial method uses Lagrange’s polynomial 
interpolation formula on equally spaced samples to construct the appropriate 
filter.

See Also

References [1] Oetken, Parks, and Schüßler. “New Results in the Design of Digital 
Interpolators.” IEEE Trans. Acoust., Speech, Signal Processing. Vol. ASSP-23 
(June 1975). Pgs. 301-309.
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resample Change sampling rate by any factor.
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6invfreqsPurpose Continuous-time (analog) filter identification from frequency data. 

Syntax [b,a] = invfreqs(h,w,nb,na)
[b,a] = invfreqs(h,w,nb,na,wt)
[b,a] = invfreqs(h,w,nb,na,wt,iter)
[b,a] = invfreqs(h,w,nb,na,wt,iter,tol)
[b,a] = invfreqs(h,w,nb,na,wt,iter,tol,'trace')
[b,a] = invfreqs(h,w,'complex',nb,na,...)

Description invfreqs is the inverse operation of freqs; it finds a continuous-time transfer 
function that corresponds to a given complex frequency response. From a 
laboratory analysis standpoint, invfreqs is useful in converting magnitude 
and phase data into transfer functions.

[b,a] = invfreqs(h,w,nb,na) returns the real numerator and denominator 
coefficient vectors b and a of the transfer function

whose complex frequency response is given in vector h at the frequency points 
specified in vector w. Scalars nb and na specify the desired orders of the 
numerator and denominator polynomials. 

Frequency is specified in radians between 0 and π, and the length of h must be 
the same as the length of w. invfreqs uses conj(h) at —w to ensure the proper 
frequency domain symmetry for a real filter.

[b,a] = invfreqs(h,w,nb,na,wt) weights the fit-errors versus frequency. 
wt is a vector of weighting factors the same length as w.

invfreqs(h,w,nb,na,wt,iter) and

invfreqs(h,w,nb,na,wt,iter,tol) provide a superior algorithm that 
guarantees stability of the resulting linear system and searches for the best fit 
using a numerical, iterative scheme. The iter parameter tells invfreqs to end 
the iteration when the solution has converged, or after iter iterations, 
whichever comes first. invfreqs defines convergence as occurring when the 
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norm of the (modified) gradient vector is less than tol. tol is an optional 
parameter that defaults to 0.01. To obtain a weight vector of all ones, use

invfreqs(h,w,nb,na,[],iter,tol)

invfreqs(h,w,nb,na,wt,iter,tol,'trace') displays a textual progress 
report of the iteration. 

invfreqs(h,w,'complex',nb,na,...) creates a complex filter. In this case no 
symmetry is enforced, and the frequency is specified in radians between -π and 
π.

Remarks When building higher order models using high frequencies, it is important to 
scale the frequencies, dividing by a factor such as half the highest frequency 
present in w, so as to obtain well conditioned values of a and b. This corresponds 
to a rescaling of time.

Examples Convert a simple transfer function to frequency response data and then back 
to the original filter coefficients:

a = [1 2 3 2 1 4]; b = [1 2 3 2 3];
[h,w] = freqs(b,a,64);
[bb,aa] = invfreqs(h,w,4,5)

bb =

    1.0000    2.0000    3.0000    2.0000    3.0000

aa =

    1.0000    2.0000    3.0000    2.0000    1.0000    4.0000
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Notice that bb and aa are equivalent to b and a, respectively. However, aa has 
poles in the left half-plane and thus the system is unstable. Use invfreqs’s 
iterative algorithm to find a stable approximation to the system:

[bbb,aaa] = invfreqs(h,w,4,5,[],30)

bbb =

    0.6816    2.1015    2.6694    0.9113   -0.1218

aaa =

    1.0000    3.4676    7.4060    6.2102    2.5413    0.0001

Suppose you have two vectors, mag and phase, that contain magnitude and 
phase data gathered in a laboratory, and a third vector w of frequencies. You 
can convert the data into a continuous-time transfer function using invfreqs:

[b,a] = invfreqs(mag.*exp(j*phase),w,2,3);

Algorithm By default, invfreqs uses an equation error method to identify the best model 
from the data. This finds b and a in

by creating a system of linear equations and solving them with MATLAB’s \ 
operator. Here A(w(k)) and B(w(k)) are the Fourier transforms of the 
polynomials a and b, respectively, at the frequency w(k), and n is the number 
of frequency points (the length of h and w). This algorithm is based on Levi [1]. 
Several variants have been suggested in the literature, where the weighting 
function wt gives less attention to high frequencies.

The superior (“output-error”) algorithm uses the damped Gauss-Newton method 
for iterative search [2], with the output of the first algorithm as the initial 
estimate. This solves the direct problem of minimizing the weighted sum of the 
squared error between the actual and the desired frequency response points:

min ( ) ( ) ( ( )) ( ( ))
,b a k

n
wt k h k A w k B w k−

=
∑ 2

1
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∑
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See Also

References [1] Levi, E.C. “Complex-Curve Fitting.” IRE Trans. on Automatic Control. 
Vol. AC-4 (1959). Pgs. 37-44.

[2] Dennis, J.E., Jr., and R.B. Schnabel. Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice Hall, 
1983.

freqs Frequency response of analog filters.

freqz Frequency response of digital filters.

invfreqz Discrete-time filter identification from frequency 
data.

prony Prony’s method for time domain IIR filter design.
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6invfreqzPurpose Discrete-time filter identification from frequency data. 

Syntax [b,a] = invfreqz(h,w,nb,na)
[b,a] = invfreqz(h,w,nb,na,wt)
[b,a] = invfreqz(h,w,nb,na,wt,iter)
[b,a] = invfreqz(h,w,nb,na,wt,iter,tol)
[b,a] = invfreqz(h,w,nb,na,wt,iter,tol,'trace')
[b,a] = invfreqz(h,w,'complex',nb,na,...)

Description invfreqz is the inverse operation of freqz; it finds a discrete-time transfer 
function that corresponds to a given complex frequency response. From a 
laboratory analysis standpoint, invfreqz can be used to convert magnitude 
and phase data into transfer functions.

[b,a] = invfreqz(h,w,nb,na) returns the real numerator and denominator 
coefficients in vectors b and a of the transfer function

whose complex frequency response is given in vector h at the frequency points 
specified in vector w. Scalars nb and na specify the desired orders of the 
numerator and denominator polynomials.

Frequency is specified in radians between 0 and π, and the length of h must be 
the same as the length of w. invfreqz uses conj(h) at —w to ensure the proper 
frequency domain symmetry for a real filter.

[b,a] = invfreqz(h,w,nb,na,wt) weights the fit-errors versus frequency. 
wt is a vector of weighting factors the same length as w.

invfreqz(h,w,nb,na,wt,iter) and

invfreqz(h,w,nb,na,wt,iter,tol) provide a superior algorithm that 
guarantees stability of the resulting linear system and searches for the best fit 
using a numerical, iterative scheme. The iter parameter tells invfreqz to end 
the iteration when the solution has converged, or after iter iterations, 
whichever comes first. invfreqz defines convergence as occurring when the 
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norm of the (modified) gradient vector is less than tol. tol is an optional 
parameter that defaults to 0.01. To obtain a weight vector of all ones, use

invfreqz(h,w,nb,na,[],iter,tol)

invfreqz(h,w,nb,na,wt,iter,tol,'trace') displays a textual progress 
report of the iteration.

invfreqz(h,w,'complex',nb,na,...) creates a complex filter. In this case no 
symmetry is enforced, and the frequency is specified in radians between -π and 
π.

Example Convert a simple transfer function to frequency response data and then back 
to the original filter coefficients:

a = [1 2 3 2 1 4]; b = [1 2 3 2 3];
[h,w] = freqz(b,a,64);
[bb,aa] = invfreqz(h,w,4,5)

bb =

    1.0000    2.0000    3.0000    2.0000    3.0000

aa =

    1.0000    2.0000    3.0000    2.0000    1.0000    4.0000

Notice that bb and aa are equivalent to b and a, respectively. However, aa has 
poles outside the unit circle and thus the system is unstable. Use invfreqz’s 
iterative algorithm to find a stable approximation to the system:

[bbb,aaa] = invfreqz(h,w,4,5,[],30)

bbb =

    0.2427    0.2788    0.0069    0.0971    0.1980

aaa =

    1.0000   –0.8944    0.6954    0.9997   –0.8933    0.6949
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Algorithm By default, invfreqz uses an equation error method to identify the best model 
from the data. This finds b and a in

by creating a system of linear equations and solving them with MATLAB’s \ 
operator. Here A(w(k)) and B(w(k)) are the Fourier transforms of the 
polynomials a and b, respectively, at the frequency w(k), and n is the number 
of frequency points (the length of h and w). This algorithm is a based on Levi [1].

The superior (“output-error”) algorithm uses the damped Gauss-Newton 
method for iterative search [2], with the output of the first algorithm as the 
initial estimate. This solves the direct problem of minimizing the weighted sum 
of the squared error between the actual and the desired frequency response 
points:

See Also

References [1] Levi, E.C. “Complex-Curve Fitting.” IRE Trans. on Automatic Control. 
Vol. AC-4 (1959). Pgs. 37-44.

[2] Dennis, J.E., Jr., and R.B. Schnabel. Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice Hall, 
1983.
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freqs Frequency response of analog filters.

freqz Frequency response of digital filters.

invfreqs Continuous-time (analog) filter identification from 
frequency data.

prony Prony’s method for time domain IIR filter design.
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6kaiserPurpose Kaiser window.

Syntax w = kaiser(n,beta)

Description w = kaiser(n,beta) returns an n-point Kaiser (  - sinh) window in the 
column vector w. beta is the Kaiser window  parameter that affects the 
sidelobe attenuation of the Fourier transform of the window.

To obtain a Kaiser window that designs an FIR filter with sidelobe height 
-α dB, use the following β:

Increasing beta widens the mainlobe and decreases the amplitude of the 
sidelobes (increases the attenuation).

See Also

References [1] Kaiser, J.F. “Nonrecursive Digital Filter Design Using the - sinh Window 
Function.” Proc. 1974 IEEE Symp. Circuits and Syst. (April 1974). Pgs. 20-23.

[2] IEEE. Digital Signal Processing II. IEEE Press. New York: John Wiley & 
Sons, 1975.
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bartlett Bartlett window.

blackman Blackman window.

boxcar Rectangular window.

chebwin Chebyshev window.

hamming Hamming window.

hanning Hanning window.

kaiserord Estimate parameters for fir1 with Kaiser window.

triang Triangular window.
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6kaiserordPurpose Estimate parameters for an FIR filter design with Kaiser window.

Syntax [n,Wn,beta,ftype] = kaiserord(f,a,dev)
[n,Wn,beta,ftype] = kaiserord(f,a,dev,Fs)
c = kaiserord(f,a,dev,Fs,'cell')

Description kaiserord returns a filter order n and beta parameter to specify a Kaiser 
window for use with the fir1 function. Given a set of specifications in the 
frequency domain, kaiserord estimates the minimum FIR filter order that will 
approximately meet the specifications. kaiserord converts the given filter 
specifications into passband and stopband ripples and converts cutoff 
frequencies into the form needed for windowed FIR filter design.

NOTE  If the band ripples are specified as unequal, the smallest one is used, 
since the Kaiser window method is constrained to give filters with equal ripple 
heights in all the passbands and stopbands.

[n,Wn,beta,ftype] = kaiserord(f,a,dev) finds the approximate order n, 
normalized frequency band edges Wn, and weights that meet input 
specifications f, a, and dev. f is a vector of band edges and a is a vector 
specifying the desired amplitude on the bands defined by f. The length of f is 
twice the length of a, minus 2. Together, f and a define a desired piecewise 
constant response function. dev is a vector the same size as a that specifies the 
maximum allowable error or deviation between the frequency response of the 
output filter and its desired amplitude, for each band.

fir1 can use the resulting order n, frequency vector Wn, multiband magnitude 
type ftype, and the Kaiser window parameter beta. The ftype string is 
intended for use with fir1; it is equal to 'high' for a highpass filter and 'stop' 
for a bandstop filter. For multiband filters, it can be equal to 'dc–0' when the 
first band is a stopband (starting at f = 0) or 'dc–1' when the first band is a 
passband.

To design a filter b that approximately meets the specifications given by kaiser 
parameters f, a, and dev:

b = fir1(n,Wn,kaiser(n+1,beta),ftype,'noscale')
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[n,Wn,beta,ftype] = kaiserord(f,a,dev,Fs) specifies a sampling 
frequency Fs. If not present, Fs defaults to 2 Hz, implying a Nyquist frequency 
of 1 Hz. You can therefore specify band edges scaled to a particular 
application’s sampling frequency.

c = kaiserord(f,a,dev,Fs,'cell') is a cell-array whose elements are the 
parameters to fir1.

NOTE  In some cases, kaiserord underestimates or overestimates the order n. 
If the filter does not meet the specifications, try a higher order such as n+1, n+2, 
and so on, or a lower order.

Results are inaccurate if the cutoff frequencies are near 0 or the Nyquist 
frequency, or if dev is large (greater than 10%).

Algorithm kaiserord uses empirically derived formulas for estimating the orders of 
lowpass filters, as well as differentiators and Hilbert transformers. Estimates 
for multiband filters (such as bandpass filters) are derived from the lowpass 
design formulas.

The design formulas that underlie the Kaiser window and its application to 
FIR filter design are

where α = -20log10δ is the stopband attenuation expressed in decibels (recall 
that δp = δs is required). The design formula is:

where n is the filter order and ∆ω is the width of the smallest transition region.

β
α α
α α α

α
=

− >
− + − ≥ ≥

<







0 1102 8 7 50

0 5842 21 0 07886 21 50 21

0 21

0 4
. ( . ),

. ( ) . ( ),

,

.

n α 7.95–
2.285 ∆ω( )
----------------------------=
6-195



kaiserord
Examples Design a lowpass filter with passband from 0 to 1 kHz and stopband from 
1500 Hz to 4 kHz. Specify passband ripple of 5% and stopband attenuation of 
40 dB:

fsamp = 8000;
fcuts = [1000 1500];
mags = [1 0];
devs = [0.05 0.01];
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');
freqz(hh)
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Design an odd-length bandpass filter (note that odd length means even order, 
so the input to fir1 must be an even integer):

fsamp = 8000;
fcuts = [1000 1300 2410];
mags = [0 1 0];
devs = [0.01 0.05 0.01];
[n,Wn,beta,ftype] = kaiserord(fcuts,mags,devs,fsamp);
n = n + rem(n,2);
hh = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');
[H,f] = freqz(hh,1,1024,fsamp);
plot(f,abs(H)), grid on

Design a lowpass filter with a passband cutoff of 1500 Hz, a stopband cutoff of 
2000 Hz, passband ripple of 0.01, stopband ripple of 0.1, and a sampling 
frequency of 8000 Hz:

[n,Wn,beta,ftype] = kaiserord([1500 2000],[1 0],[0.01 0.1],8000);
b = fir1(n,Wn,ftype,kaiser(n+1,beta),'noscale');

This is equivalent to

c = kaiserord([1500 2000],[1 0],[0.01 0.1],8000,'cell');
b = fir1(c{:});
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Remarks Be careful to distinguish between the meanings of filter length and filter order. 
The filter length is the number of impulse response samples in the FIR filter. 
Generally, the impulse response is indexed from n = 0 to n = L-1, where L is the 
filter length. The filter order is the highest power in a z-transform 
representation of the filter. For an FIR transfer function, this representation is 
a polynomial in z, where the highest power is zL-1 and the lowest power is z0. 
The filter order is 1 less than the length (L-1) and is also equal to the number 
of zeros of the z polynomial.

Diagnostics The lengths of the frequency, magnitude, and deviation vectors must match; 
otherwise, kaiserord gives the following error message:

Requires M and DEV to be the same length.
Length of F must be 2*length(M)–2.

When magnitudes are not specified correctly, kaiserord gives the following 
error messages:

Stopbands must be zero.
All passbands must have the same height.

If the band edges are not strictly increasing, kaiserord gives the following 
error message:

Bandedges must be strictly increasing.

See Also

References [1] Kaiser, J.F. “Nonrecursive Digital Filter Design Using the - sinh Window 
Function.” Proc. 1974 IEEE Symp. Circuits and Syst. (April 1974). Pgs. 20-23.

[2] IEEE. Digital Signal Processing II. IEEE Press. New York: John Wiley & 
Sons, 1975. Pgs. 123-126.

fir1 Window-based finite impulse response filter design—
standard response.

kaiser Kaiser window.

remezord Parks-McClellan optimal FIR filter order estimation.

I0
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6latc2tfPurpose Lattice filter to transfer function conversion.

Syntax [num,den] = latc2tf(k,v)
[num,den] = latc2tf(k,'iir')
num = latc2tf(k,'fir')
num = latc2tf(k)

Description [num,den] = latc2tf(k,v) finds the transfer function numerator num and 
denominator den from the IIR lattice coefficients k and ladder coefficients v.

[num,den] = latc2tf(k,'iir') assumes that k is associated with an all-pole 
IIR lattice filter.

num = latc2tf(k,'fir') and

num = latc2tf(k) find the transfer function numerators from the FIR lattice 
coefficients specified by k.

See Also latcfilt Lattice and lattice-ladder filter implementation.

tf2latc Transfer function to lattice filter conversion.
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6latcfiltPurpose Lattice and lattice-ladder filter implementation.

Syntax [f,g] = latcfilt(k,x)
[f,g] = latcfilt(k,v,x)
[f,g] = latcfilt(k,1,x)

Description [f,g] = latcfilt(k,x) filters x with the FIR lattice coefficients in vector k. 
f is the forward lattice filter result and g is the backward filter result.

If k and x are vectors, the result is a (signal) vector.

Matrix arguments are permitted under the following rules:

• If x is a matrix and k is a vector, each column of x is processed through the 
lattice filter specified by k.

• If x is a vector and k is a matrix, each column of k is used to filter x, and a 
signal matrix is returned.

• If x and k are both matrices with the same number of columns, then the i-th 
column of k is used to filter the i-th column of x. A signal matrix is returned.

[f,g] = latcfilt(k,v,x) filters x with the IIR lattice coefficients k and 
ladder coefficients v. k and v must be vectors, while x may be a signal matrix.

[f,g] = latcfilt(k,1,x) filters x with the IIR all-pole lattice specified by k. 
k and x may be vectors or matrices according to the rules given for the FIR 
lattice.

See Also filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

latc2tf Lattice filter to transfer function conversion.

tf2latc Transfer function to lattice filter conversion.
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6levinsonPurpose Levinson-Durbin recursion.

Syntax a = levinson(r,n)

Description The Levinson-Durbin recursion is an algorithm for finding an all-pole IIR filter 
with a prescribed deterministic autocorrelation sequence. It has applications in 
filter design, coding, and spectral estimation. The filter that levinson 
produces is minimum phase.

a = levinson(r,n) finds the coefficients of an nth-order autoregressive linear 
process which has r as its autocorrelation sequence. r is a real or complex 
deterministic autocorrelation sequence (a vector), and n is the order of 
denominator polynomial A(z); that is, a = [1 a(2) ... a(n+1)]. The filter 
coefficients are ordered in descending powers of z:

Algorithm levinson solves the symmetric Toeplitz system of linear equations:

where r = [R(1)  ... R(n+1)] is the input autocorrelation vector, and R(i)* 
denotes the complex conjugate of R(i). The algorithm requires O(n2) flops and 
is thus much more efficient than the MATLAB \ command for large n. 
However, the levinson function uses \ for low orders to provide the fastest 
possible execution. 

See Also

References [1] Ljung, L. System Identification: Theory for the User. Englewood Cliffs, NJ: 
Prentice Hall, 1987. Pgs. 278-280.
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lpc Linear prediction coefficients.

prony Prony’s method for time domain IIR filter design.

stmcb Linear model using Steiglitz-McBride iteration.
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6lp2bpPurpose Lowpass to bandpass analog filter transformation.

Syntax [bt,at] = lp2bp(b,a,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw)

Description lp2bp transforms analog lowpass filter prototypes with a cutoff frequency of 
1 rad/sec into bandpass filters with desired bandwidth and center frequency. 
The transformation is one step in the digital filter design process for the 
butter, cheby1, cheby2, and ellip functions.

lp2bp can perform the transformation on two different linear system 
representations: transfer function form and state-space form. In both cases, the 
input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2bp(b,a,Wo,Bw) transforms an analog lowpass filter prototype 
given by polynomial coefficients into a bandpass filter with center frequency Wo 
and bandwidth Bw. Row vectors b and a specify the coefficients of the numerator 
and denominator of the prototype in descending powers of s:

Scalars Wo and Bw specify the center frequency and bandwidth in units of 
radians/second. For a filter with lower band edge w1 and upper band edge w2, 
use Wo = sqrt(w1*w2) and Bw = w2–w1. 

lp2bp returns the frequency transformed filter in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw) converts the continuous-time 
state-space lowpass filter prototype in matrices A, B, C, D:
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into a bandpass filter with center frequency Wo and bandwidth Bw. For a filter 
with lower band edge w1 and upper band edge w2, use Wo = sqrt(w1*w2) and 
Bw = w2–w1. 

The bandpass filter is returned in matrices At, Bt, Ct, Dt.

Algorithm lp2bp is a highly accurate state-space formulation of the classic analog filter 
frequency transformation. Consider the state-space system:

where u is the input, x is the state vector, and y is the output. The Laplace 
transform of the first equation is

Now if a bandpass filter is to have center frequency ω0 and bandwidth Bw, the 
standard s-domain transformation is

where Q = ω0/Bw and p = s/ω0. Substituting this for s in the Laplace 
transformed state-space equation, and considering the operator p as d/dt:

or

Now define

which, when substituted, leads to

ẋ Ax Bu

y Cx Du

= +
= +

sx Ax Bu= +

s Q p p= +( )2 1

Qx Qx Ax Bu˙̇ ˙ ˙+ = +

Qx Ax Bu Qx˙̇ ˙ ˙− − = −

Q Qxω̇ = −

Qx Ax Q Bu˙ = + +ω
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The last two equations give equations of state. Write them in standard form 
and multiply the differential equations by ω0 to recover the time/frequency 
scaling represented by p and find state matrices for the bandpass filter:

Q = Wo/Bw; [ma,na] = size(A);
At = Wo*[A/Q eye(ma,na);–eye(ma,na) zeros(ma,na)];
Bt = Wo*[B/Q; zeros(ma,nb)];
Ct = [C zeros(mc,ma)];
Dt = d;

If the input to lp2bp is in transfer function form, the function transforms it into 
state-space form before applying this algorithm.

See Also bilinear Map variables using bilinear transformation.

impinvar Impulse invariance method of analog-to-digital filter 
conversion.

lp2bs Lowpass to bandstop analog filter transformation.

lp2hp Lowpass to highpass analog filter transformation.

lp2lp Lowpass to lowpass analog filter transformation.
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6lp2bsPurpose Lowpass to bandstop analog filter transformation.

Syntax [bt,at] = lp2bs(b,a,Wo,Bw)
[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw)

Description lp2bs transforms analog lowpass filter prototypes with a cutoff frequency of 
1 rad/sec into bandstop filters with desired bandwidth and center frequency. 
The transformation is one step in the digital filter design process for the 
butter, cheby1, cheby2, and ellip functions.

lp2bs can perform the transformation on two different linear system 
representations: transfer function form and state-space form. In both cases, the 
input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2bs(b,a,Wo,Bw) transforms an analog lowpass filter prototype 
given by polynomial coefficients into a bandstop filter with center frequency Wo 
and bandwidth Bw. Row vectors b and a specify the coefficients of the numerator 
and denominator of the prototype in descending powers of s:

Scalars Wo and Bw specify the center frequency and bandwidth in units of 
radians/second. For a filter with lower band edge w1 and upper band edge w2, 
use Wo = sqrt(w1*w2) and Bw = w2–w1. 

lp2bs returns the frequency transformed filter in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw) converts the continuous-time 
state-space lowpass filter prototype in matrices A, B, C, D: 
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into a bandstop filter with center frequency Wo and bandwidth Bw. For a filter 
with lower band edge w1 and upper band edge w2, use Wo = sqrt(w1*w2) and 
Bw = w2–w1. 

The bandstop filter is returned in matrices At, Bt, Ct, Dt.

Algorithm lp2bs is a highly accurate state-space formulation of the classic analog filter 
frequency transformation. If a bandstop filter is to have center frequency ω0 
and bandwidth Bw, the standard s-domain transformation is

where Q = ω0/Bw and p = s/ω0. The state-space version of this transformation is

Q = Wo/Bw;
At = [Wo/Q*inv(A) Wo*eye(ma);–Wo*eye(ma) zeros(ma)];
Bt = –[Wo/Q*(A B); zeros(ma,nb)];
Ct = [C/A zeros(mc,ma)];
Dt = D – C/A*B;

See lp2bp for a derivation of the bandpass version of this transformation.

See Also

s
p

Q p
=

+( )2 1

bilinear Map variables using bilinear transformation.

impinvar Impulse invariance method of analog-to-digital filter 
conversion.

lp2bp Lowpass to bandpass analog filter transformation.

lp2hp Lowpass to highpass analog filter transformation.

lp2lp Lowpass to lowpass analog filter transformation.
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6lp2hpPurpose Lowpass to highpass analog filter transformation.

Syntax [bt,at] = lp2hp(b,a,Wo)
[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo)

Description lp2hp transforms analog lowpass filter prototypes with a cutoff frequency of 
1 rad/sec into highpass filters with desired cutoff frequency. The 
transformation is one step in the digital filter design process for the butter, 
cheby1, cheby2, and ellip functions.

The lp2hp function can perform the transformation on two different linear 
system representations: transfer function form and state-space form. In both 
cases, the input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2hp(b,a,Wo) transforms an analog lowpass filter prototype 
given by polynomial coefficients into a highpass filter with cutoff frequency Wo. 
Row vectors b and a specify the coefficients of the numerator and denominator 
of the prototype in descending powers of s:

Scalar Wo specifies the cutoff frequency in units of radians/second. The 
frequency transformed filter is returned in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo) converts the continuous-time 
state-space lowpass filter prototype in matrices A, B, C, D:

into a highpass filter with cutoff frequency Wo. The highpass filter is returned 
in matrices At, Bt, Ct, Dt.
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Algorithm lp2hp is a highly accurate state-space formulation of the classic analog filter 
frequency transformation. If a highpass filter is to have cutoff frequency ω0, the 
standard s-domain transformation is

The state-space version of this transformation is

At = Wo*inv(A);
Bt = –Wo*(A\B);
Ct = C/A;
Dt = D – C/A*B;

See lp2bp for a derivation of the bandpass version of this transformation.

See Also

s
p
o= ω

bilinear Map variables using bilinear transformation.

impinvar Impulse invariance method of analog-to-digital filter 
conversion.

lp2bp Lowpass to bandpass analog filter transformation.

lp2bs Lowpass to bandstop analog filter transformation.

lp2lp Lowpass to lowpass analog filter transformation.
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6lp2lpPurpose Lowpass to lowpass analog filter transformation.

Syntax [bt,at] = lp2lp(b,a,Wo)
[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo)

Description lp2lp transforms an analog lowpass filter prototype with a cutoff frequency of 
1 rad/sec into a lowpass filter with any specified cutoff frequency. The 
transformation is one step in the digital filter design process for the butter, 
cheby1, cheby2, and ellip functions.

The lp2lp function can perform the transformation on two different linear 
system representations: transfer function form and state-space form. In both 
cases, the input system must be an analog filter prototype.

Transfer Function Form (Polynomial)

[bt,at] = lp2lp(b,a,Wo) transforms an analog lowpass filter prototype 
given by polynomial coefficients into a lowpass filter with cutoff frequency Wo. 
Row vectors b and a specify the coefficients of the numerator and denominator 
of the prototype in descending powers of s:

Scalar Wo specifies the cutoff frequency in units of radians/second. lp2lp 
returns the frequency transformed filter in row vectors bt and at.

State-Space Form

[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo) converts the continuous-time 
state-space lowpass filter prototype in matrices A, B, C, D:

into a lowpass filter with cutoff frequency Wo. lp2lp returns the lowpass filter 
in matrices At, Bt, Ct, Dt.
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Algorithm lp2lp is a highly accurate state-space formulation of the classic analog filter 
frequency transformation. If a lowpass filter is to have cutoff frequency ω0, the 
standard s-domain transformation is

The state-space version of this transformation is

At = Wo*A;
Bt = Wo*B;
Ct = C;
Dt = D;

See lp2bp for a derivation of the bandpass version of this transformation.

See Also

s p o= / ω

bilinear Map variables using bilinear transformation.

impinvar Impulse invariance method of analog-to-digital filter 
conversion.

lp2bp Lowpass to bandpass analog filter transformation.

lp2bs Lowpass to bandstop analog filter transformation.

lp2hp Lowpass to highpass analog filter transformation.
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6lpcPurpose Linear prediction coefficients.

Syntax [a,g] = lpc(x,n)

Description Linear prediction models each sample of a signal as a linear combination of 
previous samples, that is, as the output of an all-pole IIR filter. It has 
applications in filter design, speech coding, spectral analysis, and system 
identification.

[a,g] = lpc(x,n) finds the coefficients and gain of an nth-order 
auto-regressive linear process that models the time series x as

x is the real input time series (a vector), and n is the order of the denominator 
polynomial a(z); that is, a = [1 a(2) ... a(n+1)]. The filter coefficients are 
ordered in descending powers of z.

If n is unspecified, lpc uses as a default n = length(x)–1.

If x is a matrix containing a separate signal in each column, lpc returns a 
model estimate for each column in the rows of a and a row vector of gains g.

Example Model a nonrecursive (FIR) filter with an all-pole IIR filter using lpc:

x = [1:4 4:–1:1];
[a,g] = lpc(x,15);
[H,w] = freqz(x,1,512); [H1,w] = freqz(g,a,512);

x̂ k( ) a 2( )x k 1–( )– a 3( )x k 2–( )– L– a n 1+( )x k n–( )–=
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Plot the FIR response with a solid line and the IIR response with a dashed line:

plot(w/pi,abs(H),w/pi,abs(H1),'--')

Algorithm lpc uses the autocorrelation method of autoregressive (AR) modeling to find 
the filter coefficients. This technique is also called the Yule-Walker AR method 
of spectral estimation. The filter generated is stable. However, the generated 
filter might not model the process exactly even if the data sequence is truly an 
AR process of the correct order. This is because the autocorrelation method 
implicitly windows the data, that is, it assumes that signal samples beyond the 
length of x are 0.

lpc computes the least-squares solution to
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where

and m is the length of x. Solving the least-squares problem via the normal 
equations

leads to the Yule-Walker equations

where r = [r(1) r(2) ... r(n+1)] is an autocorrelation estimate for x computed 
using xcorr. The Yule-Walker equations are solved in O(n2) flops by the 
Levinson-Durbin algorithm (see levinson).

The filter gain is given by 

so that 

in the least-squares sense.
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See Also

References [1] Jackson, L.B. Digital Filters and Signal Processing. Second Ed. Boston: 
Kluwer Academic Publishers, 1989. Pgs. 255-257.

ar Compute autoregressive models of signals (see 
System Identification Toolbox User’s Guide).

levinson Levinson-Durbin recursion.

prony Prony’s method for time domain IIR filter design.

pyulear Power spectrum estimate using Yule-Walker AR 
method.

stmcb Linear model using Steiglitz-McBride iteration.
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6maxflatPurpose Generalized digital Butterworth filter design.

Syntax [b,a,] = maxflat(nb,na,Wn)
b = maxflat(nb,'sym',Wn)
[b,a,b1,b2] = maxflat(nb,na,Wn)
[...] = maxflat(nb,na,Wn,'design_flag')

Description [b,a,] = maxflat(nb,na,Wn) is a lowpass Butterworth filter with numerator 
and denominator coefficients b and a of orders nb and na respectively. Wn is the 
cutoff frequency at which the magnitude response of the filter is equal to 

(approx. -3 dB). Wn must be between 0 and 1, where 1 corresponds to half 
the sampling frequency (the Nyquist frequency).

b = maxflat(nb,'sym',Wn) is a symmetric FIR Butterworth filter. nb must 
be even, and Wn is restricted to a subinterval of [0,1]. The function raises an 
error if Wn is specified outside of this subinterval.

[b,a,b1,b2] = maxflat(nb,na,Wn) returns two polynomials b1 and b2 
whose product is equal to the numerator polynomial b (that is, 
b = conv(b1,b2)). b1 contains all the zeros at z = –1, and b2 contains all the 
other zeros.

[...] = maxflat(nb,na,Wn,'design_flag') enables you to monitor the 
filter design, where design_flag is

• trace, for a textual display of the design table used in the design

• plots, for plots of the filter’s magnitude, group delay, and zeros and poles

• both, for both the textual display and plots

1 2/
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Examples nb = 10; na = 2; Wn = 0.2*pi;
[b,a,b1,b2] = maxflat(nb,na,Wn,'plots')

Algorithm The method consists of the use of formulae, polynomial root finding, and a 
transformation of polynomial roots.

See Also

References [1] Selesnick, I.W., and C.S. Burrus. “Generalized Digital Butterworth Filter 
Design.” Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing. 
Vol. 3 (May 1996).
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butter Butterworth analog and digital filter design.

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

freqz Frequency response of digital filters.
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6medfilt1Purpose One-dimensional median filtering.

Syntax y = medfilt1(x,n)
y = medfilt1(x,n,blksz)

Description y = medfilt1(x,n) applies an order n, one-dimensional median filter to 
vector x. y is the same length as x; the function treats the signal as if it is 0 
beyond the end points.

For n odd, y(k) is the median of x(k–(n–1)/2:k+(n–1)/2).

For n even, y(k) is the median of x(k–n/2), x(k–(n/2)+1), ..., x(k+(n/2)–1). 
In this case, medfilt1 sorts the numbers, then takes the average of the 
(n–1)/2 and ((n–1)/2)+1 elements.

The default for n is 3.

y = medfilt1(x,n,blksz) uses a for-loop to compute blksz (block size) 
output samples at a time. Use blksz << length(x) if you are low on memory, 
since medfilt1 uses a working matrix of size n-by-blksz. By default, 
blksz = length(x); this is the fastest execution if you have sufficient memory.

If x is a matrix, medfilt1 median filters its columns using

 y(:,i) = medfilt1(x(:,i),n,blksz) 

in a loop over the columns of x.

See Also

References [1] Pratt, W.K. Digital Image Processing. New York: John Wiley & Sons, 1978. 
Pgs. 330-333.

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

medfilt2 Two-dimensional median filtering (see Image 
Processing Toolbox User’s Guide).

median Median value (see the online MATLAB Function 
Reference).
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6modulatePurpose Modulation for communications simulation.

Syntax y = modulate(x,Fc,Fs,'method')
y = modulate(x,Fc,Fs,'method',opt)
[y,t] = modulate(x,Fc,Fs)

Description y = modulate(x,Fc,Fs,'method') and

y = modulate(x,Fc,Fs,'method',opt) modulate the real message signal x 
with a carrier frequency Fc and sampling frequency Fs, using one of the options 
listed below for method. Note that some methods accept an option, opt.

amdsb–sc
or

am

Amplitude modulation, double sideband, suppressed carrier. 
Multiplies x by a sinusoid of frequency Fc:

y = x.*cos(2*pi*Fc*t)

amdsb–tc Amplitude modulation, double sideband, transmitted carrier. 
Subtracts scalar opt from x and multiplies the result by a sinusoid 
of frequency Fc:

y = (x–opt).*cos(2*pi*Fc*t)

If the opt parameter is not present, modulate uses a default of 
min(min(x)) so that the message signal (x–opt) is entirely 
non-negative and has a minimum value of 0.

amssb Amplitude modulation, single sideband. Multiplies x by a 
sinusoid of frequency Fc and adds the result to the Hilbert 
transform of x multiplied by a phase shifted sinusoid of frequency 
Fc:

y = 
x.*cos(2*pi*Fc*t)+imag(hilbert(x)).*sin(2*pi*Fc*t)

This effectively removes the upper sideband.
6-218



modulate
fm Frequency modulation. Creates a sinusoid with instantaneous 
frequency that varies with the message signal x: 

y = cos(2*pi*Fc*t + opt*cumsum(x))

cumsum is a rectangular approximation to the integral of x. 
modulate uses opt as the constant of frequency modulation. If opt 
is not present, modulate uses a default of

opt = (Fc/Fs)*2*pi/(max(max(x)))

so the maximum frequency excursion from Fc is Fc Hz.

pm Phase modulation. Creates a sinusoid of frequency Fc whose 
phase varies with the message signal x:

y = cos(2*pi*Fc*t + opt*x)

modulate uses opt as the constant of phase modulation. If opt is 
not present, modulate uses a default of

opt = pi/(max(max(x)))

so the maximum phase excursion is π radians.

pwm Pulse-width modulation. Creates a pulse-width modulated 
signal from the pulse widths in x. The elements of x must be 
between 0 and 1, specifying the width of each pulse in fractions of 
a period. The pulses start at the beginning of each period, that is, 
they are left justified. 

modulate(x,Fc,Fs,'pwm','centered')

yields pulses centered at the beginning of each period. y is length 
length(x)*Fs/Fc.

ptm Pulse time modulation. Creates a pulse time modulated signal 
from the pulse times in x. The elements of x must be between 0 
and 1, specifying the left edge of each pulse in fractions of a period. 
opt is a scalar between 0 and 1 that specifies the length of each 
pulse in fractions of a period. The default for opt is 0.1. y is length 
length(x)*Fs/Fc.

qam Quadrature amplitude modulation. Creates a quadrature 
amplitude modulated signal from signals x and opt:

y = x.*cos(2*pi*Fc*t) + opt.*sin(2*pi*Fc*t)

opt must be the same size as x.
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If you do not specify method, then modulate assumes am. Except for the pwm and 
ptm cases, y is the same size as x.

If x is an array, modulate modulates its columns.

[y,t] = modulate(x,Fc,Fs) returns the internal time vector t that modulate 
uses in its computations.

See Also demod Demodulation for communications simulation.

vco Voltage controlled oscillator.
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6pburgPurpose Power spectrum estimate using the Burg method.

Syntax Pxx = pburg(x,p,nfft)
[Pxx,freq] = pburg(x,p,nfft,Fs)
[Pxx,freq,a] = pburg(...)
pburg(...)

Description pburg estimates the power spectral density (PSD) of the signal vector x[n] 
using the Burg method. This method fits an autoregressive (AR) model to the 
lattice reflection coefficients estimated from the signal. Since it represents the 
spectrum by an all-pole model, the correct choice of the model order p is crucial. 
pburg returns the same results as pyulear for large signal lengths.

Pxx = pburg(x,p,nfft) returns Pxx, the power spectrum estimate. x is the 
input signal, p is the model order for the all-pole filter, and nfft is the FFT 
length (defaults to 256 if not specified).

[Pxx,freq] = pburg(x,p,nfft,Fs) returns Pxx, the power spectrum 
estimate, and freq, a vector of frequencies at which the PSD was estimated. 
x is the input signal, p is the model order for the all-pole filter, and nfft is the 
FFT length (defaults to 256 if not specified). Fs specifies the signal’s sampling 
frequency, which is used to scale the output frequency vector freq. If the input 
signal is real-valued, freq ranges from 0 to Fs/2. If the input signal is complex, 
freq ranges from 0 to Fs. Fs defaults to 2 if not specified.

[Pxx,freq,a] = pburg(...) returns vector a of filter coefficients for the 
all-pole filter model.

pburg(...) plots the power spectral density in the first available figure 
window.

Example This example analyzes a sequence x[n], assuming that two real signals are 
present in the signal subspace. In this case, the model order must be four or 
larger, because each real sinusoid is the sum of two complex exponentials. 
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Experience shows that taking a larger model order than the minimum seems 
to work better.

% Create xx as a signal vector.

nn = 0:199;
randn('seed',0)
xx = cos(0.257*pi*nn) + sin(0.2*pi*nn) + 0.01*randn(size(nn));
[PP,ff,aa] = pburg(xx,7); % 7th order model

plot(ff*pi,10*log10(PP)), grid   % Plot the pole locations.

Diagnostics The first input argument must be a full vector, otherwise pburg generates the 
following error message:

Input signal cannot be sparse.

If you specify an empty matrix for the second argument, pburg generates the 
following error message:

Model order must be given, empty not allowed.
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See Also

References [1] Marple, S.L. Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice Hall, 
1987. Chapter 7.

lpc Linear prediction coefficients.

pmtm Power spectrum estimate using the multitaper 
method (MTM).

pmusic Power spectrum estimate using MUSIC eigenvector 
method.

prony Prony’s method for time domain IIR filter design.

psd Estimate the power spectral density (PSD) of a signal 
using Welch’s method.

pyulear Power spectrum estimate using Yule-Walker AR 
method.
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6pmtmPurpose Power spectrum estimate using the multitaper method (MTM).

Syntax Pxx = pmtm(x)
Pxx = pmtm(x,nw)
Pxx = pmtm(x,nw,nfft)
[Pxx,f] = pmtm(x,nw,nfft,Fs)
[Pxx,f] = pmtm(x,nw,nfft,Fs,'method')
[Pxx,Pxxc,f] = pmtm(x,nw,nfft,Fs,'method')
[Pxx,Pxxc,f] = pmtm(x,nw,nfft,Fs,'method',p)
[Pxx,Pxxc,f] = pmtm(x,e,v,nfft,Fs,'method',p)
[Pxx,Pxxc,f] = pmtm(x,dpss_params,nfft,Fs,'method',p)

Description pmtm estimates the power spectral density (PSD) of the real time series x using 
the multitaper method (MTM), described in [1].

Pxx = pmtm(x,nw) estimates the PSD using nw as the time-bandwidth product 
for the discrete prolate spheroidal sequences (Slepian sequences) that are used 
as data windows. The default for nw is 4; other typical choices are
2, 5/2, 3, 7/2. The number of sequences used to form Pxx is 2*nw–1.

Pxx = pmtm(x,nw,nfft) defines the frequency grid as length nfft. When x is 
real, Pxx is length (nfft/2+1) for nfft even and (nfft+1)/2 for nfft odd; 
when x is complex, Pxx is length nfft. The default for nfft is 256 or the next 
power of 2 greater than the length of x, whichever is larger.

[Pxx,f] = pmtm(x,nw,nfft,Fs) returns f, the vector of frequencies at which 
the PSD is estimated, for the sampling frequency Fs. The default for Fs is 2 Hz.

[Pxx,f] = pmtm(x,nw,nfft,Fs,'method') specifies the algorithm used for 
combining the individual spectral estimates, where method is

• adapt, to specify Thomson’s adaptive nonlinear combination (default)

• unity, to specify a linear combination with unity weights

• eigen, to specify a linear combination with eigenvalue weights

[Pxx,Pxxc,f] = pmtm(x,nw,nfft,Fs,'method') returns Pxxc, the 95% 
confidence interval for Pxx, and
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[Pxx,Pxxc,f] = pmtm(x,nw,nfft,Fs,'method',p) returns Pxxc, the p*100% 
confidence interval for Pxx, where p is a scalar between 0 and 1. Confidence 
intervals are computed using a chi-squared approach, where Pxxc(:,1) is the 
lower bound and Pxxc(:,2) is the upper bound of the confidence interval.

[Pxx,Pxxc,f] = pmtm(x,e,v,nfft,Fs,'method',p) returns the PSD 
estimate Pxx, the confidence interval Pxxc, and the frequency vector f from the 
data tapers in e and their concentrations v.

[Pxx,Pxxc,f] = pmtm(x,dpss_params,nfft,Fs,'method',p) returns the 
PSD estimate Pxx, the confidence interval Pxxc, and the frequency vector f 
from the data tapers computed using dpss with parameters from the cell array 
dpss_params, whose first element is the second input to dpss. The first dpss 
parameter (n) is determined by the length of x. For example, 
pmtm(x,{3.5,'trace'},512,Fs) calculates the Slepian sequences for nw = 3.5, 
and displays the method that dpss uses. See dpss for other options.

Remarks pmtm with no output arguments plots the PSD in the current or next available 
figure, with confidence intervals.

To use default parameters for any argument in an expression, insert an empty 
matrix []. For example, pmtm(x,[],[],1000) uses defaults for the second and 
third elements, in this case, nw and nfft.
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Example This example analyzes a sinusoid in white noise:

Fs = 1000; t = 0:1/Fs:0.3;
x = cos(2*pi*t*200) + randn(size(t));
[Pxx,Pxxc,f] = pmtm(x,3.5,512,Fs,[],0.99);
plot(f,10*log10([Pxx Pxxc]))

See Also

References [1] Percival, D.B., and A.T. Walden. Spectral Analysis for Physical 
Applications: Multitaper and Conventional Univariate Techniques. Cambridge: 
Cambridge University Press, 1993.
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dpss Discrete prolate spheroidal sequences (Slepian 
sequences).

pburg Power spectrum estimate using the Burg method.

pmusic Power spectrum estimate using MUSIC eigenvector 
method.

psd Estimate the power spectral density (PSD) of a signal 
using Welch’s method.

pyulear Power spectrum estimate using Yule-Walker AR 
method.
6-226



pmtm
[2] Thomson, D.J. “Spectrum estimation and harmonic analysis.” In 
Proceedings of the IEEE. Vol. 70 (1982). Pgs. 1055-1096.
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6pmusicPurpose Power spectrum estimate using MUSIC eigenvector method.

Syntax [Pxx,f] = pmusic(x,p)
[Pxx,f] = pmusic(x,[p thresh])
[Pxx,f] = pmusic(x,[p thresh],nfft,Fs,window,noverlap)
[Pxx,f] = pmusic(x,...,'corr')
[Pxx,f] = pmusic(x,...,'ev')
[Pxx,f,evects,svals] = pmusic(x,...)

Description pmusic estimates the power spectral density (PSD) of a signal or correlation 
matrix using Schmidt’s eigen-analysis method [1]. The name MUSIC is an 
acronym for MUltiple SIgnal Classification. The eigenvector method, which 
uses eigenvalue weighting, is also supported [2]. The calling syntax is similar 
to that of psd, which also performs spectrum estimation. psd uses the classical 
FFT-based approach while pmusic performs eigen-analysis of the signal’s 
correlation matrix.

[Pxx,f] = pmusic(x,p) and

[Pxx,f] = pmusic(x,[p thresh]) return Pxx, the power spectrum estimate, 
and f, a vector of frequencies at which the PSD is estimated. x is the input 
signal, where

• A row or column vector represents one observation of the process output (for 
example, one “signal”)

• A rectangular (possibly square) array assumes that each column of x is a 
separate observation of the process output (for example, each column is one 
output of an array of sensors, as in array processing)

• A square matrix, given the trailing argument 'corr', represents a 
correlation matrix

The second argument is a one- or two-element vector, either p or [p thresh]. 
If only p is specified, the signal subspace dimension is p. If [p thresh] is 
specified, thresh is multiplied by λmin, the smallest eigenvalue; eigenvalues 
below the threshold λmin*thresh are assigned to the noise subspace. In this 
case, p is the maximum dimension of the signal subspace. 
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CAUTION  pmusic must assign eigenvectors to the noise and signal subspaces, 
but this is very difficult to do in practice. The two parameters p and thresh 
are provided for flexibility and control.

[Pxx,f] = pmusic(x,[p thresh],nfft,Fs,window,noverlap) specifies the 
FFT length nfft (default is 256) and the sampling frequency for the signal Fs 
(default is 2). If Fs is specified, the output frequency vector f is scaled by this 
value. If the input signal is real-valued, the frequency range is 0 to Fs/2; for 
the complex case, it is 0 to Fs. window is a scalar specifying the rectangular 
window length, or a vector giving the actual window coefficients. noverlap, 
used in conjunction with window, is a scalar that gives the number of points by 
which to overlap successive windows.

[Pxx,f] = pmusic(x,...,'corr') forces x to be taken as a correlation 
matrix. In this case, the arguments window and noverlap are ignored.

[Pxx,f] = pmusic(x,...,'ev') selects the eigenvector variant of the 
MUSIC estimator. See the “Algorithm” section below for an explanation of how 
this is different from the MUSIC method.

[Pxx,f,evects,svals] = pmusic(x,...) returns two additional arguments. 
evects is a matrix of eigenvectors spanning the noise subspace (one per 
column). svals is either a vector of singular values (squared) from svd or a 
vector of eigenvalues of the correlation matrix when the 'corr' option is 
present.

Remarks The input x can be a vector or a matrix. x can be interpreted as signal data or 
as a correlation matrix, in one of three ways:

• x is a vector of signal values (row or column). In this case, the dimension of 
the eigenvectors must be given. This is done either by taking the default 
value of 2*p or by specifying a window length using window.

• x is a rectangular (m-by-n, possibly square) matrix. In this case, each column 
of x is a separate observation signal that enters into the SVD analysis, n is 
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the number of observations, and the dimension of the eigenvectors is equal 
to m, the length of a column.

• x is a square matrix and the trailing 'corr' is present. x is treated as a 
correlation matrix. In this case, the matrix must have only real, nonnegative 
eigenvalues.

The inputs p and thresh can determine the number of noise eigenvectors in one 
of three ways:

• If thresh < 1, or if it is unspecified, the number of eigenvectors spanning the 
signal subspace will be equal to p. p must be an integer satisfying 
0 ≤ p < n, where n is the dimension of the eigenvectors. This dimension n is 
the column length in the data matrix case, the matrix size in the correlation 
matrix case, or the window length for signal vectors. The value of thresh is 
unused.

• If p ≥ n, thresh must be at least 1. thresh is used as the multiplier to 
determine an absolute threshold for splitting the eigenvalues between the 
signal and noise subspaces:

If thresh < 1, there will be no noise eigenvectors. This case is not allowed 
and gives the following error message:
Noise subspace dimension cannot be zero.

• When p < n and thresh ≥ 1, p specifies the maximum number of signal 
eigenvectors. However, the threshold test specified by thresh can also take 
eigenvectors from the signal subspace and assign them to the noise subspace.

Examples This example analyzes a signal vector xx, assuming that two real signals are 
present in the signal subspace. In this case, the dimension of the signal 
subspace is 4 because each real sinusoid is the sum of two complex 
exponentials:

nn = 0:199;
xx = cos(0.257*pi*nn) + sin(0.2*pi*nn) + 0.01*randn(size(nn));
[PP,ff] = pmusic(xx,4);

This example analyzes the same signal vector xx with an eigenvalue cutoff of 
10% above the minimum. Setting p = Inf forces the signal/noise subspace 

λk thresh( )min λk{ }       λk vk,{ }    belong to noise subspace⇒≤
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decision to be based on thresh. Use eigenvectors of dimension 7 and a sampling 
frequency Fs of 8 kHz:

[PP,ff] = pmusic(xx,[Inf,1.1],[],8000,7); % window length = 7

With the third and fourth outputs, by plotting the zeros of the 
noise-eigenvector polynomials, it is possible to create a “Root-MUSIC” 
algorithm, as the following zplane plot illustrates:

[PP,ff,v_noise] = pmusic(xx,4);
for kk = 1:size(v_noise,2)
   rr(:,kk) = roots(v_noise(:,kk));
end
zplane(rr)

Assume that RR is a square correlation matrix (for example, 7-by-7):

RR = toeplitz(cos(0.1*pi*[0:6])) + 0.1*eye(7);
[PP,ff] = pmusic(RR,4,'corr');

Make an observation matrix xx that is rectangular (100-by-7):

xx = reshape(cos(0.257*pi*(0:699)),7,100) + 0.1*randn(7,100);
[PP,ff] = pmusic(xx,4);

Use the same signal, but let pmusic form the 100-by-7 data matrix using its 
window and overlap inputs. In addition, use a longer FFT:

yy = xx(:);
[PP,ff] = pmusic(yy,4,512,[],7,0);

If we set p = 0, all the eigenvectors are assigned to the noise subspace. 'ev' 
specifies the eigenvector weighting. This turns out to be equivalent to MVDL 
(Capon’s MLM):

[PP,ff] = pmusic(RR,0,'ev','corr');

Algorithm The MUSIC estimate is given by the formula
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where N is the dimension of the eigenvectors and vk is the k-th eigenvector of 
the correlation matrix of the input signal. The integer p is the dimension of the 
signal subspace, so the eigenvectors vk used in the sum correspond to the 
smallest eigenvalues and also span the noise subspace. The vector e(f) consists 
of complex exponentials, so the inner product 

amounts to a Fourier transform. The second form is preferred for computation 
because the FFT is computed for each vk and then the squared magnitudes are 
summed.

In the eigenvector method, the summation is weighted by the eigenvalues λk of 
the correlation matrix:

The function relies on the svd matrix decomposition in the signal case, and it 
uses the eig function for analyzing the correlation matrix. If SVD is used, the 
correlation matrix is never explicitly computed, but the singular values are 
the λk.

Diagnostics There must be at least one output argument and at least two inputs; otherwise, 
pmusic stops and gives one of the following error messages:

Must have at least 1 output argument.
Must have at least 2 input arguments.

The first argument must be a full matrix, otherwise pmusic gives the following 
error message:

Input signal or correlation cannot be sparse.
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If the second argument was entered as an empty matrix, or if it has more than 
two elements, or if it has negative or non-integer elements, pmusic gives one of 
the following error messages:

P cannot be empty.
Second input must have only 1 or 2 elements.
P must be an integer.
Second input must contain non-negative entries.

If the value of p is too large with respect to the eigenvector dimension, and 
thresh is less than 1, no eigenvectors can be assigned to the noise subspace and 
the algorithm fails. In this case, pmusic gives the following error message:

Noise subspace dimension cannot be zero.

If the 'corr' parameter is used, then the first input must be a square 
correlation matrix. If it is not, pmusic gives the following error message:

Correlation matrix (R) is not square.

The correlation matrix is then checked for validity; if it fails, pmusic gives the 
following error message:

Correlation matrix (R) has negative or complex eigenvalue.

See Also

References [1] Schmidt, R.O. “Multiple Emitter Location and Signal Parameter 
Estimation.” IEEE Trans. Antennas Propagation. Vol. AP-34 (March 1986). 
Pgs. 276-280.

[2] Marple, S.L. Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice Hall, 
1987. Pgs. 373-378.

lpc Linear prediction coefficients.

pburg Power spectrum estimate using the Burg method.

pmtm Power spectrum estimate using the multitaper method 
(MTM).

prony Prony’s method for time domain IIR filter design.

psd Estimate the power spectral density (PSD) of a signal using 
Welch’s method.

pyulear Power spectrum estimate using Yule-Walker AR method.
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6poly2rcPurpose Reflection coefficients from polynomial coefficients.

Syntax k = poly2rc(a)

Description k = poly2rc(a) finds the reflection coefficients of the lattice structure of the 
discrete filter a. a must be real, and a(1) cannot be 0. k is a row vector of size 
length(a)–1.

A simple, fast way to check if a has all of its roots inside the unit circle is to 
check if each of the elements of k have magnitude less than 1:

stable = all(abs(poly2rc(a))<1)

Example Consider an IIR filter given by

a = [1.0000   0.6149   0.9899   0.0000   0.0031  –0.0082];

Its reflection coefficient representation is

k = poly2rc(a)

k =
    0.3090    0.9800    0.0031    0.0082   –0.0082

Limitations If abs(k(i)) == 1 for any i, finding the reflection coefficients is an 
ill-conditioned problem. poly2rc will return some NaNs and provide a warning 
message in this case.

Algorithm poly2rc implements the recursive relationship:
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This relationship is based on Levinson’s recursion [1]. To implement it, 
poly2rc loops through a in reverse order after discarding its first element. For 
each loop iteration i, the function

1 sets k(i) equal to a(i)

2 applies the second relationship above to elements 1 through i of the vector a:
a = (a–k(i)*fliplr(a))/(1–k(i)^2);

See Also

References [1] McClellan, J. “Parametric Signal Modeling.” Advanced Topics in Signal 
Processing. Oppenheim, A.V., and J.S. Lim, ed. Englewood Cliffs, NJ: Prentice 
Hall, 1988. Pgs. 20-21.

latc2tf Lattice filter to transfer function conversion.

latcfilt Lattice and lattice-ladder filter implementation.

rc2poly Polynomial coefficients from reflection coefficients.

tf2latc Transfer function to lattice filter conversion.
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6polystabPurpose Stabilize polynomial.

Syntax b = polystab(a)

Description polystab stabilizes a polynomial with respect to the unit circle; it reflects roots 
with magnitudes greater than 1 inside the unit circle.

b = polystab(a) where a is a vector of polynomial coefficients normally in the 
z-domain:

returns a row vector containing the stabilized polynomial.

Example polystab can convert a linear-phase filter into a minimum-phase filter with 
the same magnitude response:

h = fir1(25,0.4);
hmin = polystab(h)*norm(h)/norm(polystab(h));

Algorithm polystab finds the roots of the polynomial and maps those roots found outside 
the unit circle to the inside of the unit circle:

v = roots(a);
vs = 0.5*(sign(abs(v)–1)+1);
v = (1–vs).*v + vs./conj(v);
b = a(1)*poly(v);

See Also

  a z a a z a na z na( ) ( ) ( ) ( )= + + + +− −1 2 11 L

roots Polynomial roots (see the online MATLAB Function 
Reference).
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6pronyPurpose Prony’s method for time domain IIR filter design.

Syntax [b,a] = prony(h,nb,na)

Description Prony’s method is an algorithm for finding an IIR filter with a prescribed time 
domain impulse response. It has applications in filter design, exponential 
signal modeling, and system identification (parametric modeling).

[b,a] = prony(h,nb,na) finds a filter with numerator order nb, denominator 
order na, and the time domain impulse response in h. prony returns the filter 
coefficients in row vectors b and a, of length nb + 1 and na + 1, respectively. 
The filter coefficients are in descending powers of z:

Example Recover the coefficients of a Butterworth filter from its impulse response:

[b,a] = butter(4,0.2)

b = 
    0.0048    0.0193    0.0289    0.0193    0.0048

a =
    1.0000    –2.3695    2.3140    –1.0547    0.1874

h = filter(b,a,[1 zeros(1,25)]);
[bb,aa] = prony(h,4,4)

bb = 
    0.0048    0.0193    0.0289    0.0193    0.0048

ab =
    1.0000    –2.3695    2.3140    –1.0547    0.1874

Algorithm prony implements the method described in reference [1]. This method uses a 
variation of the covariance method of AR modeling to find the denominator 
coefficients a and then finds the numerator coefficients b for which the impulse 
response of the output filter matches exactly the first nb + 1 samples of x. The 
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filter is not necessarily stable, but potentially can recover the coefficients 
exactly if the data sequence is truly an autoregressive moving average (ARMA) 
process of the correct order.

See Also

References [1] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Pgs. 226-228.

butter Butterworth analog and digital filter design.

cheby1 Chebyshev type I filter design (passband ripple).

cheby2 Chebyshev type II filter design (stopband ripple).

ellip Elliptic (Cauer) filter design.

invfreqz Discrete-time filter identification from frequency 
data.

levinson Levinson-Durbin recursion.

lpc Linear prediction coefficients.

stmcb Linear model using Steiglitz-McBride iteration.
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6psdPurpose Estimate the power spectral density (PSD) of a signal using Welch’s method.

Syntax Pxx = psd(x)
Pxx = psd(x,nfft)
[Pxx,f] = psd(x,nfft,Fs)
Pxx = psd(x,nfft,Fs,window)
Pxx = psd(x,nfft,Fs,window,noverlap)
Pxx = psd(x,...,'dflag')
[Pxx,Pxxc,f] = psd(x,nfft,Fs,window,noverlap,p)
psd(x,...)

Description Pxx = psd(x) estimates the power spectrum of the sequence x using the 
Welch method of spectral estimation. Pxx = psd(x) uses the following default 
values:

• nfft = min(256,length(x)) 

• Fs = 2 

• window = hanning(nfft) 

• noverlap = 0 

nfft specifies the FFT length that psd uses. This value determines the 
frequencies at which the power spectrum is estimated. Fs is a scalar that 
specifies the sampling frequency. window specifies a windowing function and 
the number of samples psd uses in its sectioning of the x vector. noverlap is the 
number of samples by which the sections overlap. Any arguments that you omit 
from the end of the input parameter list use the default values shown above.

If x is real, psd estimates the spectrum at positive frequencies only; in this case, 
the output Pxx is a column vector of length nfft/2+1 for nfft even and 
(nfft+1)/2 for nfft odd. If x is complex, psd estimates the spectrum at both 
positive and negative frequencies and Pxx has length nfft.

Pxx = psd(x,nfft) uses the specified FFT length nfft in estimating the 
power spectrum for x. Specify nfft as a power of 2 for fastest execution.

[Pxx,f] = psd(x,nfft,Fs) returns a vector f of frequencies at which the 
function evaluates the PSD. f is the same size as Pxx, so plot(f,Pxx) plots the 
power spectrum versus properly scaled frequency. Fs has no effect on the 
output Pxx; it is a frequency scaling multiplier.
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Pxx = psd(x,nfft,Fs,window) specifies a windowing function and the 
number of samples per section of the x vector. If you supply a scalar for window, 
psd uses a Hanning window of that length. The length of the window must be 
less than or equal to nfft; psd zero pads the sections if the length of the window 
is less than nfft. psd returns an error if the length of the window is greater 
than nfft.

Pxx = psd(x,nfft,Fs,window,noverlap) overlaps the sections of x by 
noverlap samples.

You can use the empty matrix [] to specify the default value for any input 
argument except x. For example,

psd(x,[],10000)

is equivalent to

psd(x)

but with a sampling frequency of 10,000 Hz instead of the default of 2 Hz.

Pxx = psd(x,...,'dflag') specifies a detrend option, where dflag is

• linear, to remove the best straight-line fit from the pre-windowed sections 
of x

• mean, to remove the mean from the pre-windowed sections of x

• none, for no detrending (default)

The dflag parameter must appear last in the list of input arguments. psd 
recognizes a dflag string no matter how many intermediate arguments are 
omitted.

[Pxx,Pxxc,f] = psd(x,nfft,Fs,window,noverlap,p) where p is a positive 
scalar between 0 and 1 returns a vector Pxxc that contains an estimate of the 
p*100 percent confidence interval for Pxx. Pxxc is a two-column matrix that is 
the same length as Pxx. The interval [Pxxc(:,1),Pxxc(:,2)] covers the true 
PSD with probability p. plot(f,[Pxx Pxxc]) plots the power spectrum inside 
the p*100 percent confidence interval. If unspecified, p defaults to 0.95.
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psd(x,...) with no output arguments plots the PSD versus frequency in the 
current figure window. If the p parameter is specified, the plot includes the 
confidence interval.

Example Generate a colored noise signal and plot its PSD with a confidence interval of 
95%. Specify a length 1024 FFT, a 512-point Kaiser window with no overlap, 
and a sampling frequency of 10 kHz:

h = fir1(30,0.2,boxcar(31));     % design a lowpass filter
r = randn(16384,1);             % white noise
x = filter(h,1,r);             % color the noise
psd(x,1024,10000,kaiser(512,5),0,0.95)

0 1000 2000 3000 4000 5000
-70

-60

-50

-40

-30

-20

-10

0

10

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

Power Spectral Density Estimate
6-241



psd
Algorithm psd calculates the power spectral density using Welch’s method (see references 
[1] and [2]):

1 It applies the window specified by the window vector to each successive 
detrended section of x.

2 It transforms each section with an nfft-point FFT.

3 It forms the periodogram of each section by scaling the magnitude squared 
of each transform.

4 It averages the periodograms of the overlapping sections to form Pxx, the 
power spectrum of x. 

The number of sections that psd averages is

k = fix((length(x)–noverlap)/(length(window)–noverlap))

Diagnostics An appropriate diagnostic message is displayed when incorrect arguments to 
psd are used:

Requires window’s length to be no greater than FFT length.
Requires NOVERLAP to be strictly less than the window length.
Requires positive integer values for NFFT and NOVERLAP.
Requires confidence parameter to be a scalar between 0 and 1.
Requires vector input.

See Also cohere Estimate magnitude squared coherence function 
between two signals.

csd Estimate the cross spectral density (CSD) of two 
signals.

pburg Power spectrum estimate using the Burg method.

pmtm Power spectrum estimate using the multitaper 
method (MTM).

pmusic Power spectrum estimate using MUSIC eigenvector 
method.

pyulear Power spectrum estimate using Yule-Walker AR 
method.

specgram Time-dependent frequency analysis (spectrogram).

tfe Transfer function estimate from input and output.
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References [1] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
Processing. Englewood Cliffs, NJ: Prentice Hall, 1975. Pgs. 399-419.

[2] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation of Power 
Spectra: A Method Based on Time Averaging Over Short, Modified 
Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15 (June 1967). 
Pgs. 70-73.

[3] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 1989. Pgs. 311-312.
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6pulstranPurpose Pulse train generator.

Syntax y = pulstran(t,d,'func')
y = pulstran(t,d,'func',p1,p2,…)
y = pulstran(t,d,p,Fs)
y = pulstran(t,d,p)

Description pulstran generates pulse trains from continuous functions or sampled 
prototype pulses.

y = pulstran(t,d,'func') generates a pulse train based on samples of a 
continuous function, 'func', where func is

• gauspuls, for Gaussian-modulated sinusoidal pulse generator

• rectpuls, for sampled aperiodic rectangle generator

• tripuls, for sampled aperiodic triangle generator

pulstran is evaluated length(d) times and returns the sum of the evaluations 
y = func(t–d(1)) + func(t–d(2)) + ...

The function is evaluated over the range of argument values specified in array 
t, after removing a scalar argument offset taken from the vector d. Note that 
func must be a vectorized function that can take an array t as an argument.

An optional gain factor may be applied to each delayed evaluation by specifying 
d as a two-column matrix, with the offset defined in column 1 and associated 
gain in column 2 of d. Note that a row vector will be interpreted as specifying 
delays only. 

pulstran(t,d,'func',p1,p2,...) allows additional parameters to be passed 
to 'func' as necessary. For example,

func(t–d(1),p1,p2,...) + func(t–d(2),p1,p2,...) + ...

pulstran(t,d,p,Fs) generates a pulse train that is the sum of multiple 
delayed interpolations of the prototype pulse in vector p, sampled at the rate 
Fs, where p spans the time interval [0, (length(p)–1)/Fs], and its samples 
are identically 0 outside this interval. By default, linear interpolation is used 
for generating delays.
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pulstran(t,d,p) assumes that the sampling rate Fs is equal to 1 Hz.

pulstran(...,'func') specifies alternative interpolation methods. See 
interp1 for a list of available methods.

Examples This example generates an asymmetric sawtooth waveform with a repetition 
frequency of 3 Hz and a sawtooth width of 0.1 sec. It has a signal length of 1 sec 
and a 1 kHz sample rate:

t = 0 : 1/1e3 : 1; % 1 kHz sample freq for 1 sec 
d = 0 : 1/3 : 1; % 3 Hz repetition freq 
y = pulstran(t,d,'tripuls',0.1,–1);
plot(t,y)

This example generates a periodic Gaussian pulse signal at 10 kHz, with 50% 
bandwidth. The pulse repetition frequency is 1 kHz, sample rate is 50 kHz, and 
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pulse train length is 10 msec. The repetition amplitude should attenuate by 0.8 
each time:

t = 0 : 1/50E3 : 10e–3;
d = [0 : 1/1E3 : 10e–3 ; 0.8.^(0:10)]';
y = pulstran(t,d,'gauspuls',10e3,0.5); 
plot(t,y)
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This example generates a train of 10 Hamming windows:

p = hamming(32);
t = 0:320; d = (0:9)'*32;
y = pulstran(t,d,p);
plot(t,y)

See Also

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

chirp Swept-frequency cosine generator.

cos Cosine of vector/matrix elements (see the online 
MATLAB Function Reference).

diric Dirichlet or periodic sinc function.

gauspuls Gaussian-modulated sinusoidal pulse generator.

rectpuls Sampled aperiodic rectangle generator.

sawtooth Sawtooth or triangle wave generator.

sin Sine of vector/matrix elements (see the online 
MATLAB Function Reference).

sinc Sinc or sin(πt)/πt function.

square Square wave generator.

tripuls Sampled aperiodic triangle generator.
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6pyulearPurpose Power spectrum estimate using Yule-Walker AR method.

Syntax [Pxx,freq] = pyulear(x,p)
[Pxx,freq] = pyulear(x,p,nfft,Fs,'corr')
[Pxx,freq,a] = pyulear(x,p,nfft,Fs,'corr')
pyulear(...)

Description pyulear estimates the power spectral density (PSD) of the signal vector x[n] or 
correlation matrix R using the Yule-Walker AR method. It derives an all-pole 
model to represent the spectrum, so the correct choice of the model order p is 
crucial.

[Pxx,freq] = pyulear(x,p) returns Pxx, the power spectrum estimate, and 
freq, a vector of frequencies at which the PSD was estimated. x is the input 
signal, or the input correlation matrix, where

• A row or column vector represents one signal

• A square, Hermitian symmetric matrix represents a correlation matrix 
(when 'corr' is used)

• A rectangular array assumes that each column of x is a separate “look” at the 
signal (as in array processing)

p is the model order for the all-pole filter.

[Pxx,freq] = pyulear(x,p,nfft,Fs,'corr') specifies the FFT length nfft 
(default is 256) and the sampling frequency for the signal Fs (default is 2). If Fs 
is specified, the output frequency vector freq is scaled by this value. If the 
input signal is real-valued, freq ranges from 0 to Fs/2. If the input signal is 
complex, freq ranges from 0 to Fs. 'corr' is a text string to specify a 
correlation option. Specifying 'corr' forces x to be taken as a correlation 
matrix. 'corr' must appear at the end of the argument list.

[Pxx,freq,a] = pyulear(x,p,nfft,Fs,'corr') returns vector a of filter 
coefficients for the all-pole filter model.

pyulear(...) plots the power spectral density in the first available figure 
window.
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Examples This example analyzes a sequence x[n], assuming that two real signals are 
present in the signal subspace. In this case, the model order must be four or 
larger, because each real sinusoid is the sum of two complex exponentials. 
Experience shows that taking a larger model order than the minimum seems 
to work better.

% Create xx as a signal vector.

nn = 0:199;
randn('seed',0)
xx = cos(0.257*pi*nn) + sin(0.2*pi*nn) + 0.01*randn(size(nn));
[PP,ff,aa] = pyulear(xx,7); % 7th order model

plot(ff*pi,10*log10(PP)) % Plot the pole locations.
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The following examples use xx as a correlation matrix and a data matrix:

% Assume that RR is a square corr. matrix (for example, 7 by 7).

RR = toeplitz(cos(0.1*pi*[0:6])) + 0.1*eye(7);
[PP,ff] = pyulear(RR,4,'corr');

% Create a matrix of 100 observations of a stochastic process:
% xx is rectangular (7 by 100).

xx = reshape(cos(0.257*pi*(0:699)),7,100) + 0.1*randn(7,100);
[PP,ff] = pyulear(xx,4);  % default FFT length = 256

% Same (7 by 100) matrix with a longer FFT.

[PP,ff] = pyulear(xx,4,512);

Algorithm The Yule-Walker AR estimate is given by the formula:

where the vector of all-pole filter coefficients a is the solution of the 
autocorrelation normal equation:

The matrix R is the autocorrelation matrix, which should be Toeplitz [1]. The 
elements of the vector r are also correlations.

Diagnostics There must be at least one output argument and at least two inputs; otherwise, 
pyulear stops and generates one of the following error messages:

Must have at least 1 output argument.
Must have at least 2 input arguments.

The first argument must be a full matrix, otherwise pyulear generates the 
following error message:

Input signal or correlation cannot be sparse.

Pyule f( ) 1

a
H

e f( )
2

------------------------=

Ra r=
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If you specify an empty matrix for the second argument, pyulear generates the 
following error message:

Model order must be given, empty not allowed.

If the final argument is the string 'corr', then the first input must be a square 
correlation matrix that is also Hermitian symmetric, otherwise pyulear gives 
the following error messages:

Correlation matrix (R) is not square.
Correlation matrix (R) is not Hermitian symmetric.

See Also

References [1] Marple, S.L. Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice Hall, 
1987. Chapter 7.

lpc Linear prediction coefficients.

pburg Power spectrum estimate using the Burg method.

pmtm Power spectrum estimate using the multitaper 
method (MTM).

pmusic Power spectrum estimate using MUSIC eigenvector 
method.

prony Prony’s method for time domain IIR filter design.

psd Estimate the power spectral density (PSD) of a signal 
using Welch’s method.
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6rc2polyPurpose Polynomial coefficients from reflection coefficients.

Syntax a = rc2poly(k)

Description a = rc2poly(k) finds the filter coefficients a, with a(1) = 1, from the real 
reflection coefficients k of the lattice structure of a discrete filter. a is row vector 
of length k + 1.

Example Consider an IIR filter given by reflection coefficients k:

k = [0.3090    0.9800    0.0031    0.0082   –0.0082];

Its polynomial representation is

a = rc2poly(k)

a =

1.0000    0.6149    0.9899    0.0000    0.0031  –0.0082

Algorithm rc2poly computes a using Levinson’s recursion [1]. The function

1 Sets the output vector a to the first element of k

2 Loops through the remaining elements of k

For each loop iteration i, a = [a + a(i–1:–1:1)*k(i) k(i)].

3 Implements a = [1 a]

See Also

References [1] McClellan, J. “Parametric Signal Modeling.” Advanced Topics in Signal 
Processing. Oppenheim, A.V., and J.S. Lim, ed. Englewood Cliffs, NJ: Prentice 
Hall, 1988. Pgs. 20-21.

latc2tf Lattice filter to transfer function conversion.

latcfilt Lattice and lattice-ladder filter implementation.

poly2rc Reflection coefficients from polynomial coefficients.

tf2latc Transfer function to lattice filter conversion.
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6rcepsPurpose Real cepstrum and minimum phase reconstruction.

Syntax y = rceps(x)
[y,ym] = rceps(x)

Description The real cepstrum is the inverse Fourier transform of the real logarithm of the 
magnitude of the Fourier transform of a sequence.

rceps(x) returns the real cepstrum of the real sequence x. The real cepstrum 
is a real-valued function.

[y,ym] = rceps(x) returns both the real cepstrum y and a minimum phase 
reconstructed version ym of the input sequence.

Algorithm rceps is an M-file implementation of algorithm 7.2 in [2], that is:

y = real(ifft(log(abs(fft(x)))));

Appropriate windowing in the cepstral domain forms the reconstructed 
minimum phase signal:

w = [1; 2*ones(n/2–1,1); ones(1 – rem(n,2),1); zeros(n/2–1,1)];
ym = real(ifft(exp(fft(w.*y))));

See Also

References [1] Oppenheim, A.V., and R.W. Schafer. Digital Signal Processing. Englewood 
Cliffs, NJ: Prentice Hall, 1975.

[2] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John 
Wiley & Sons, 1979.

cceps Complex cepstral analysis.

fft One-dimensional fast Fourier transform.

hilbert Hilbert transform.

icceps Inverse complex cepstrum.

unwrap Unwrap phase angles.
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6rectpulsPurpose Sampled aperiodic rectangle generator.

Syntax y = rectpuls(t)
y = rectpuls(t,w)

Description y = rectpuls(t) returns a continuous, aperiodic, unity-height rectangular 
pulse at the sample times indicated in array t, centered about t = 0 and with 
a default width of 1. Note that the interval of non-zero amplitude is defined to 
be open on the right, that is, rectpuls(–0.5) = 1 while rectpuls(0.5) = 0. 

y = rectpuls(t,w) generates a rectangle of width w.

rectpuls is typically used in conjunction with the pulse train generating 
function, pulstran.

See Also chirp Swept-frequency cosine generator.

cos Cosine of vector/matrix elements (see the online 
MATLAB Function Reference).

diric Dirichlet or periodic sinc function.

gauspuls Gaussian-modulated sinusoidal pulse generator.

pulstran Pulse train generator.

sawtooth Sawtooth or triangle wave generator.

sin Sine of vector/matrix elements (see the online 
MATLAB Function Reference).

sinc Sinc or sin(πt)/πt function.

square Square wave generator.

tripuls Sampled aperiodic triangle generator.
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6remezPurpose Parks-McClellan optimal FIR filter design.

Syntax b = remez(n,f,a)
b = remez(n,f,a,w)
b = remez(n,f,a,'ftype')
b = remez(n,f,a,w,'ftype')
b = remez(...,{lgrid})
b = remez(n,f,'fresp',w)
b = remez(n,f,'fresp',w,'ftype')
b = remez(n,f,{'fresp',p1,p2,...},w)
b = remez(n,f,{'fresp',p1,p2,...},w,'ftype')
[b,delta] = remez(...)
[b,delta,opt] = remez(...)

Description remez designs a linear-phase FIR filter using the Parks-McClellan 
algorithm [1]. The Parks-McClellan algorithm uses the Remez exchange 
algorithm and Chebyshev approximation theory to design filters with an 
optimal fit between the desired and actual frequency responses. The filters are 
optimal in the sense that the maximum error between the desired frequency 
response and the actual frequency response is minimized. Filters designed this 
way exhibit an equiripple behavior in their frequency responses and hence are 
sometimes called equiripple filters.

b = remez(n,f,a) returns row vector b containing the n+1 coefficients of the 
order n FIR filter whose frequency-amplitude characteristics match those 
given by vectors f and a. 

The output filter coefficients (taps) in b obey the symmetry relation

 b k b n k k n( ) ( ), , ,= + − = +2 1 1K
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Vectors f and a specify the frequency-magnitude characteristics of the filter:

• f is a vector of pairs of frequency points, specified in the range between 0 and 
1, where 1 corresponds to half the sampling frequency (the Nyquist 
frequency). The frequencies must be in increasing order.

• a is a vector containing the desired amplitudes at the points specified in f. 

The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for 
k odd is the line segment connecting the points (f(k), a(k)) and (f(k+1), 
a(k+1)).

The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for 
k even is unspecified. The areas between such points are transition or “don’t 
care” regions.

• f and a must be the same length. The length must be an even number.

The relationship between the f and a vectors in defining a desired frequency 
response is shown below:

remez(n,f,a,w) uses the weights in vector w to weight the fit in each 
frequency band. The length of w is half the length of f and a, so there is exactly 
one weight per band.

1.0
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Desired amplitude
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b = remez(n,f,a,'ftype') and

b = remez(n,f,a,w,'ftype') specify a filter type, where ftype is

• hilbert, for linear-phase filters with odd symmetry (type III and type IV)

The output coefficients in b obey the relation b(k) = -b(n + 2 -k), k = 1,...,n + 1. 
This class of filters includes the Hilbert transformer, which has a desired 
amplitude of 1 across the entire band.

For example, 
h = remez(30,[0.1 0.9],[1 1],'hilbert');

designs an approximate FIR Hilbert transformer of length 31.

• differentiator, for type III and IV filters, using a special weighting 
technique

For nonzero amplitude bands, it weights the error by a factor of 1/f so that 
the error at low frequencies is much smaller than at high frequencies. For 
FIR differentiators, which have an amplitude characteristic proportional to 
frequency, these filters minimize the maximum relative error (the maximum 
of the ratio of the error to the desired amplitude).

b = remez(...,{lgrid}) uses the integer lgrid to control the density of the 
frequency grid, which has roughly (lgrid*n)/(2*bw) frequency points, where 
bw is the fraction of the total frequency band interval [0,1] covered by f. 
Increasing lgrid often results in filters that are more exactly equiripple, but 
which take longer to compute. The default value of 16 is the minimum value 
that should be specified for lgrid. Note that the {lgrid} argument must be a 
1-by-1 cell array.

b = remez(n,f,'fresp',w) returns row vector b containing the n+1 
coefficients of the order n FIR filter whose frequency-amplitude characteristics 
best approximate the response specified by function fresp. The function is 
called from within remez with the following syntax:

[dh,dw] = fresp(n,f,gf,w)
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The arguments are similar to those for remez:

• n is the filter order.

• f is the vector of frequency band edges that appear monotonically between 
0 and 1, where 1 is the Nyquist frequency.

• gf is a vector of grid points that have been linearly interpolated over each 
specified frequency band by remez. gf determines the frequency grid at 
which the response function must be evaluated, and contains the same data 
returned by cremez in the fgrid field of the opt structure.

• w is a vector of real, positive weights, one per band, used during optimization. 
w is optional in the call to remez; if not specified, it is set to unity weighting 
before being passed to 'fresp'.

• dh and dw are the desired complex frequency response and band weight 
vectors, respectively, evaluated at each frequency in grid gf.

The predefined frequency response function (fresp) that remez calls is 
remezfrf in the signal/private directory.

b = remez(n,f,{'fresp',p1,p2,...},w) allows you to specify additional 
parameters (p1, p2, etc.) to pass to fresp. Note that b = remez(n,f,a,w) is a 
synonym for b = remez(n,f,{'remezfrf',a},w), where a is a vector 
containing the desired amplitudes at the points specified in f. 

b = remez(n,f,'fresp',w,'ftype') and 

b = remez(n,f,{'fresp',p1,p2,...},w,'ftype') design antisymmetric 
(odd) rather than symmetric (even) filters, where 'ftype' is either 'd' for a 
differentiator or 'h' for a Hilbert transformer.

In the absence of a specification for ftype, a preliminary call is made to fresp 
to determine the default symmetry property sym. This call is made using the 
syntax:

sym = fresp('defaults',{n,f,[],w,p1,p2,...})

The arguments n, f, w, etc., may be used as necessary in determining an 
appropriate value for sym, which remez expects to be either 'even' or 'odd'. If 
the fresp function does not support this calling syntax, remez defaults to even 
symmetry.
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[b,delta] = remez(...) returns the maximum ripple height in delta.

[b,delta,opt] = remez(...) returns a structure, opt, of optional results 
with the following fields: 

opt.fgrid Frequency grid vector used for the filter design optimization

opt.des Desired frequency response for each point in opt.fgrid

opt.wt Weighting for each point in opt.fgrid

opt.H Actual frequency response for each point in opt.fgrid

opt.error Error at each point in opt.fgrid (opt.des–opt.H)

opt.iextr Vector of indices into opt.fgrid for extremal frequencies

opt.fextr Vector of extremal frequencies
6-259



remez
Example Graph the desired and actual frequency responses of a 17th-order 
Parks-McClellan bandpass filter:

f = [0 0.3 0.4 0.6 0.7 1]; a = [0 0 1 1 0 0];
b = remez(17,f,a);
[h,w] = freqz(b,1,512);
plot(f,a,w/pi,abs(h))

Algorithm remez is a MEX-file version of the original Fortran code from [1], altered to 
design arbitrarily long filters with arbitrarily many linear bands.

remez designs type I, II, III, and IV linear-phase filters. Type I and Type II are 
the defaults for n even and n odd, respectively, while Type III (n even) and 
Type IV (n odd) are obtained with the 'hilbert' and 'differentiator' flags. 
The different types of filters have different symmetries and certain constraints 
on their frequency responses (see reference [5] for more details):
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Diagnostics An appropriate diagnostic message is displayed if incorrect arguments are 
used:

Filter order must be 3 or more.
There should be one weight per band.
Frequency and amplitude vectors must be the same length.
The number of frequency points must be even.
Frequencies must lie between 0 and 1.
Frequencies must be specified in bands.
Frequencies must be nondecreasing.
Adjacent bands not allowed.

A more serious warning message is

–– Failure to Converge ––
Probable cause is machine rounding error.

In the rare event that you see this message, it is possible that the filter design 
may still be correct. Verify the design by checking its frequency response.

Linear 
Phase 
Filter type

Filter 
Order n Symmetry of Coefficients

Response H(f), 
f = 0

Response H(f), 
f = 1 (Nyquist)

Type I Even even: No restriction No restriction

Type II Odd No restriction H(1) = 0

Type III Even odd: H(0) = 0 H(1) = 0

Type IV Odd H(0) = 0 No restriction

  b k b n k k n( ) ( ), , ,= + − = +2 1 1  K

  b k b n k k n( ) ( ), , ,= − + − = +2 1 1  K
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See Also

References [1] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John 
Wiley & Sons, 1979. Algorithm 5.1.

[2] IEEE. Selected Papers in Digital Signal Processing, II. IEEE Press. New 
York: John Wiley & Sons, 1979.

[3] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John Wiley 
& Sons, 1987. Pg. 83.

[4] Rabiner, L.R., J.H. McClellan, and T.W. Parks. “FIR Digital Filter Design 
Techniques Using Weighted Chebyshev Approximations.” Proc. IEEE 63 
(1975).

[5] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 1989. Pgs. 256-266.

butter Butterworth analog and digital filter design.

cheby1 Chebyshev type I filter design (passband ripple).

cheby2 Chebyshev type II filter design (stopband ripple).

cremez Complex and nonlinear-phase equiripple FIR filter 
design

ellip Elliptic (Cauer) filter design.

fir1 Window-based finite impulse response filter design—
standard response.

fir2 Window-based finite impulse response filter design—
arbitrary response.

fircls Constrained least square FIR filter design for 
multiband filters.

fircls1 Constrained least square filter design for lowpass 
and highpass linear phase FIR filters.

firls Least square linear-phase FIR filter design.

firrcos Raised cosine FIR filter design.

remezord Parks-McClellan optimal FIR filter order estimation.

yulewalk Recursive digital filter design.
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6remezordPurpose Parks-McClellan optimal FIR filter order estimation.

Syntax [n,fo,ao,w] = remezord(f,a,dev)
[n,fo,ao,w] = remezord(f,a,dev,Fs)
c = remezord(f,a,dev,Fs,'cell')

Description [n,fo,ao,w] = remezord(f,a,dev) finds the approximate order, normalized 
frequency band edges, frequency band amplitudes, and weights that meet 
input specifications f, a, and dev, to use with the remez command.

• f is a vector of frequency band edges (between 0 and Fs/2, where Fs is the 
sampling frequency), and a is a vector specifying the desired amplitude on 
the bands defined by f. The length of f is twice the length of a, minus 2. The 
desired function is piecewise constant.

• dev is a vector the same size as a that specifies the maximum allowable 
deviation or ripples between the frequency response and the desired 
amplitude of the output filter, for each band.

Use remez with the resulting order n, frequency vector fo, amplitude response 
vector ao, and weights w to design the filter b which approximately meets the 
specifications given by remezord input parameters f, a, and dev:

b = remez(n,fo,ao,w)

[n,fo,ao,w] = remezord(f,a,dev,Fs) specifies a sampling frequency Fs. 
Fs defaults to 2 Hz, implying a Nyquist frequency of 1 Hz. You can therefore 
specify band edges scaled to a particular application’s sampling frequency.

In some cases remezord underestimates the order n. If the filter does not meet 
the specifications, try a higher order such as n+1 or n+2.

c = remezord(f,a,dev,Fs,'cell') specifies a cell-array whose elements are 
the parameters to remez.

Examples Design a minimum-order lowpass filter with a 500 Hz passband cutoff 
frequency and 600 Hz stopband cutoff frequency, with a sampling frequency of 
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2000 Hz), at least 40 dB attenuation in the stopband, and less than 3 dB of 
ripple in the passband:

rp = 3;          % passband ripple
rs = 40;         % stopband ripple
Fs = 2000;       % sampling frequency
f = [500 600];   % cutoff frequencies
a = [1 0];       % desired amplitudes
% compute deviations
dev = [(10^(rp/20)–1)/(10^(rp/20)+1)  10^(–rs/20)];   
[n,fo,ao,w] = remezord(f,a,dev,Fs);
b = remez(n,fo,ao,w);
[h,f] = freqz(b,1,1024,Fs);
plot(f,20*log10(abs(h)))

Note that the filter falls slightly short of meeting the specifications. Using n+1 
in the call to remez instead of n achieves the desired amplitude characteristics.
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Design a lowpass filter with a 1500 Hz passband cutoff frequency and 2000 Hz 
stopband cutoff frequency, with a sampling frequency of 8000 Hz, a maximum 
stopband amplitude of 0.1, and a maximum passband error (ripple) of 0.01:

[n,fo,ao,w] = remezord( [1500 2000], [1 0], [0.01 0.1], 8000 );
b = remez(n,fo,ao,w);

This is equivalent to

c = remezord( [1500 2000], [1 0], [0.01 0.1], 8000, 'cell');
b = remez(c{:});

NOTE  In some cases, remezord underestimates or overestimates the order n. If 
the filter does not meet the specifications, try a higher order such as n+1 
or n+2.

Results are inaccurate if the cutoff frequencies are near 0 or the Nyquist 
frequency.

Algorithm remezord uses the algorithm suggested in [1]. This method is inaccurate for 
band edges close to either 0 or the Nyquist frequency (Fs/2).

Diagnostics If the input parameter lengths are not consistent, remezord gives the following 
error messages:

Requires M and DEV to be the same length.
Length of F must be length(M)–2.

See Also buttord Butterworth filter order selection.

cheb1ord Chebyshev type I filter order selection.

cheb2ord Chebyshev type II filter order selection.

ellipord Elliptic filter order selection.

kaiserord Estimate parameters for an FIR filter design with 
Kaiser window.

remez Parks-McClellan optimal FIR filter design.
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References [1] Rabiner, L.R., and O. Herrmann. “The Predictability of Certain Optimum 
Finite Impulse Response Digital Filters.” IEEE Trans. on Circuit Theory. 
Vol. CT-20, No. 4 (July 1973). Pgs. 401-408.

[2] Rabiner, L.R., and B. Gold. Theory and Application of Digital Signal 
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6resamplePurpose Change sampling rate by any factor.

Syntax y = resample(x,p,q)
y = resample(x,p,q,n)
y = resample(x,p,q,n,beta)
y = resample(x,p,q,b)
[y,b] = resample(x,p,q)

Description y = resample(x,p,q) resamples the sequence in vector x at p/q times the 
original sampling rate, using a polyphase filter implementation. The length of 
y is equal to ceil(length(x)*p/q). p and q must be positive integers. If x is a 
matrix, resample works down the columns of x.

resample applies an anti-aliasing (lowpass) FIR filter to x during the 
resampling process. It designs the filter using fir1 with a Kaiser window.

y = resample(x,p,q,n) uses n terms on either side of the current sample, 
x(k), to perform the resampling. The length of the FIR filter resample uses is 
proportional to n; larger values of n provide better accuracy at the expense of 
more computation time. The default for n is 10. If you let n = 0, resample 
performs a nearest-neighbor interpolation:

y(k) = x(round((k-1)*q/p)+1)

where y(k) = 0 if the index to x is greater than length(x).

y = resample(x,p,q,n,beta) uses beta as the design parameter for the 
Kaiser window that resample employs in designing the lowpass filter. The 
default for beta is 5.

y = resample(x,p,q,b) filters x with b, a vector of filter coefficients.

[y,b] = resample(x,p,q) returns the vector b, which contains the 
coefficients of the filter applied to x during the resampling process.
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Examples Resample a simple linear sequence at 3/2 the original rate:

Fs1 = 10;            % original sampling frequency in Hz
t1 = 0:1/Fs1:1;      % time vector
x = t1;              % define a linear sequence
y = resample(x,3,2); % now resample it
t2 = (0:(length(y)–1))*2/(3*Fs1); % new time vector
plot(t1,x,'*',t2,y,'o',–0.5:0.01:1.5,–0.5:0.01:1.5,':')
legend('original','resampled')

Notice that the last few points of the output y are inaccurate. In its filtering 
process, resample assumes the samples at times before and after the given 
samples in x are equal to zero. Thus large deviations from zero at the end 
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points of the sequence x can cause inaccuracies in y at its end points. The 
following two plots illustrate this side effect of resample:

x = [1:10 9:–1:1]; y = resample(x,3,2);
plot(1:19,x,'*',(0:28)*2/3 + 1,y,'o')
x = [10:–1:1 2:10]; y = resample(x,3,2);
plot(1:19,x,'*',(0:28)*2/3 + 1,y,'o')

Diagnostics If p or q are not positive integers, resample gives the appropriate error 
message:

P must be a positive integer.
Q must be a positive integer.

If x is not a vector, resample gives the following error message:

Input X must be a vector.
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See Also decimate Decrease the sampling rate for a sequence 
(decimation).

fir1 Window-based finite impulse response filter design—
standard response.

interp Increase sampling rate by an integer factor 
(interpolation).

interp1 One-dimensional data interpolation (table lookup) 
(see the online MATLAB Function Reference).

intfilt Interpolation FIR filter design.

kaiser Kaiser window.

spline Cubic spline interpolation (see the online MATLAB 
Function Reference).

upfirdn Upsample, apply an FIR filter, and downsample.
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6residuezPurpose z-transform partial-fraction expansion.

Syntax [r,p,k] = residuez(b,a)
[b,a] = residuez(r,p,k)

Description residuez converts a discrete time system, expressed as the ratio of two 
polynomials, to partial fraction expansion, or residue, form. It also converts the 
partial fraction expansion back to the original polynomial coefficients.

[r,p,k] = residuez(b,a) finds the residues, poles, and direct terms of a 
partial fraction expansion of the ratio of two polynomials, b(z) and a(z). Vectors 
b and a specify the coefficients of the polynomials of the discrete-time system 
b(z)/a(z) in descending powers of z:

If there are no multiple roots and a > n–1,

The returned column vector r contains the residues, column vector p contains 
the pole locations, and row vector k contains the direct terms. The number of 
poles is

n = length(a)–1 = length(r) = length(p)

The direct term coefficient vector k is empty if length(b) < length(a); 
otherwise

length(k) = length(b) – length(a) + 1

If p(j) = ... = p(j+s–1) is a pole of multiplicity s, then the expansion 
includes terms of the form
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a z a a z a z a z

m
m

n
n

( )

( )

= + + + +

= + + + +

− − −

− − −
0 1

1
2

2

0 1
1

2
2

L

L

  

b z

a z

r

p z

r n

p n z
k k z k m n z m n( )

( )
( )

( )

( )

( )
( ) ( ) ( ) ( )=

−
+ +

−
+ + + + − +− −

− − −1

1 1 1
1 2 11 1

1L L

  

r j

p j z

r j

p j z

r j s

p j z s
( )

( )

( )

( ( ) )

( )

( ( ) )1

1

1

1

11 1 2 1−
+ +

−
+ + + −

−− − −L
6-271



residuez
[b,a] = residuez(r,p,k) with three input arguments and two output 
arguments, converts the partial fraction expansion back to polynomials with 
coefficients in row vectors b and a.

The residue function in the MATLAB environment is very similar to residuez. 
It computes the partial fraction expansion of continuous-time systems in the 
Laplace domain (see reference [1]), rather than discrete-time systems in the 
z-domain as does residuez.

Algorithm residuez applies standard MATLAB functions and partial fraction techniques 
to find r, p, and k from b and a. It finds:

1 The direct terms a using deconv (polynomial long division) when 
length(b)>length(a)–1.

2 The poles using p = roots(a). mpoles finds repeated poles and reorders the 
poles according to their multiplicities.

3 The residue for each nonrepeating pole pi by multiplying b(z)/a(z) by 
1/(1-piz

-1) and evaluating the resulting rational function at z = pi. 

4 The residues for the repeated poles by solving
S2*r2 = h – S1*r1

for r2 using \. h is the impulse response of the reduced b(z)/a(z), S1 is a 
matrix whose columns are impulse responses of the first-order systems 
made up of the nonrepeating roots, and r1 is a column containing the 
residues for the nonrepeating roots. Each column of matrix S2 is an impulse 
response. For each root pj of multiplicity sj, S2 contains sj columns 
representing the impulse responses of each of the following systems:

The vector h and matrices S1 and S2 have n + xtra rows, where n is the total 
number of roots and the internal parameter xtra, set to 1 by default, 
determines the degree of overdetermination of the system of equations. 

Diagnostics If a(1) == 0 while computing the partial fraction decomposition using 
[r,p,k] = residuez(b,a), residuez gives the following error message:

First coefficient in A vector must be nonzero.
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If the number of residues r and poles p is not the same, residuez gives the 
following error message:

R and P vectors must be the same size.

See Also

References [1] Oppenheim, A.V., and R.W. Schafer. Digital Signal Processing. Englewood 
Cliffs, NJ: Prentice Hall, 1975. Pgs. 166-170.

convmtx Convolution matrix.

deconv Deconvolution and polynomial division (see the 
online MATLAB Function Reference).

poly Polynomial with specified roots (see the online 
MATLAB Function Reference).

prony Prony’s method for time domain IIR filter design.

residue Partial fraction expansion (see the online MATLAB 
Function Reference).

roots Polynomial roots (see the online MATLAB Function 
Reference).

ss2tf State-space to zero-pole-gain conversion.

tf2ss Transfer function to state-space conversion.

tf2zp Transfer function to zero-pole-gain conversion.

zp2ss Zero-pole-gain to state-space conversion.
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6sawtoothPurpose Sawtooth or triangle wave generator.

Syntax x = sawtooth(t)
x = sawtooth(t,width)

Description sawtooth(t) generates a sawtooth wave with period 2π for the elements of 
time vector t. sawtooth(t) is similar to sin(t), but it creates a sawtooth wave 
with peaks of -1 and 1 instead of a sine wave. The sawtooth wave is defined to 
be -1 at multiples of 2π and to increase linearly with time with a slope of 1/π at 
all other times.

sawtooth(t,width) generates a modified triangle wave where width, a scalar 
parameter between 0 and 1, determines the fraction between 0 and 2π at which 
the maximum occurs. The function increases from -1 to 1 on the interval 0 to 
2π*width, then decreases linearly from 1 to -1 on the interval 2π*width to 2π. 
Thus a parameter of 0.5 specifies a standard triangle wave, symmetric about 
time instant π with peak-to-peak amplitude of 1. sawtooth(t,1) is equivalent 
to sawtooth(t).

Diagnostics If the width parameter is not a scalar, sawtooth gives the following error 
message:

Requires WIDTH parameter to be a scalar.

See Also chirp Swept-frequency cosine generator.

cos Cosine of vector/matrix elements (see the online 
MATLAB Function Reference).

diric Dirichlet or periodic sinc function.

gauspuls Gaussian-modulated sinusoidal pulse generator.

pulstran Pulse train generator.

rectpuls Sampled aperiodic rectangle generator.

sin Sine of vector/matrix elements (see the online 
MATLAB Function Reference).

sinc Sinc or sin(πt)/πt function.

square Square wave generator.

tripuls Sampled aperiodic triangle generator.
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6sincPurpose Sinc function.

Syntax y = sinc(x)

Description sinc computes the sinc function of an input vector or array, where the sinc 
function is 

This function is the continuous inverse Fourier transform of the rectangular 
pulse of width 2π and height 1:

y = sinc(x) returns an array y the same size as x, whose elements are the 
sinc function of the elements of x.

The space of functions bandlimited in the frequency band  is spanned 
by the infinite (yet countable) set of sinc functions shifted by integers. Thus any 
such bandlimited function g(t) can be reconstructed from its samples at integer 
spacings:
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Example Perform ideal bandlimited interpolation by assuming that the signal to be 
interpolated is 0 outside of the given time interval and that it has been sampled 
at exactly the Nyquist frequency:

t = (1:10)'; % a column vector of time samples
randn('seed',0);
x = randn(size(t)); % a column vector of data
% ts is times at which to interpolate data
ts = linspace(–5,15,600)';
y = sinc(ts(:,ones(size(t))) – t(:,ones(size(ts)))')*x;
plot(t,x,'o',ts,y)
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See Also chirp Swept-frequency cosine generator.

cos Cosine of vector/matrix elements (see the online 
MATLAB Function Reference).

diric Dirichlet or periodic sinc function.

gauspuls Gaussian-modulated sinusoidal pulse generator.

pulstran Pulse train generator.

rectpuls Sampled aperiodic rectangle generator.

sawtooth Sawtooth or triangle wave generator.

sin Sine of vector/matrix elements (see the online 
MATLAB Function Reference).

square Square wave generator.

tripuls Sampled aperiodic triangle generator.
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6sos2ssPurpose Second-order section to state-space conversion.

Syntax [A,B,C,D] = sos2ss(sos)

Description sos2ss converts a second-order section representation of a given system to an 
equivalent state-space representation.

[A,B,C,D] = sos2ss(sos) converts the system sos, in second-order section 
form, to a single-input, single-output state-space representation:

The discrete transfer function in second-order section form is given by

where L is the number of rows in sos. sos is a L-by-6 matrix organized as

The entries of sos must be real for proper conversion to state space. The 
returned matrix A is size N-by-N, where N = 2L-1, B is a length N-1 column 
vector, C is a length N-1 row vector, and D is a scalar.
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Example Compute the state-space representation of a simple second-order section form 
system:

sos = [1  1  1  1  0 –1; –2  3  1  1 10  1];
[A,B,C,D] = sos2ss(sos)

A =

  –10.8990   –3.1463         0         0
    3.1463         0         0         0
   –9.8990   –2.8284    0.8990    0.3178
         0         0    0.3178         0

B =
     1
     0
     1
     0

C =
   19.7980    5.6569    1.2020    2.5106

D =
    –2

Algorithm sos2ss first finds the zeros and poles of the second-order sections using roots, 
then uses zp2ss to find a state-space representation of the system.

See Also sos2tf Second-order section to transfer function conversion.

sos2zp Second-order section to zero-pole-gain conversion.

ss2sos State-space to second-order section conversion.

zp2sos Zero-pole-gain to second-order section conversion.
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6sos2tfPurpose Second-order section to transfer function conversion.

Syntax [b,a] = sos2tf(sos)

Description sos2tf converts a second-order section representation of a given system to an 
equivalent transfer function representation.

[b,a] = sos2tf(sos) returns the numerator coefficients b and denominator 
coefficients a of the transfer function that describes a discrete-time system 
given by sos in second-order section form. The second-order section format of 
H(z) is given by

where L is the number of rows of sos. sos is an L-by-6 matrix which contains 
the coefficients of each second-order section stored in its rows:

Row vectors b and a contain the numerator and denominator coefficients of 
H(z) stored in descending powers of z:

Algorithm sos2tf uses the conv function to multiply all of the numerator and 
denominator second-order polynomials together.

H z H z
b b z b z

a a z a z
k

k

L
k k k

k k kk

L

( ) ( )= = + +
+ +

=

− −

− −
=

∏ ∏
1

0 1
1

2
2

0 1
1

2
2

1

 

sos

b b b a a a

b b b a a a

b b b a a aL L L L L L

=



















01 11 21 01 11 21

02 12 22 02 12 22

0 1 2 0 1 2

M M M M M M

  

H z
B z

A z

b b z b n z

a a z a m z

n

m( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )
= = + + + +

+ + + +

− −

− −
1 2 1

1 2 1

1

1
L

L

6-280



sos2tf
Example Compute the transfer function representation of a simple second-order section 
form system:

sos = [1  1  1  1  0 –1; –2  3  1  1 10  1];
[b,a] = sos2tf(sos)

b =
   –2     1     2     4     1 

a =
    1    10     0    –10    –1 

See Also sos2ss Second-order section to state-space conversion.

sos2zp Second-order section to zero-pole-gain conversion.

ss2sos State-space to second-order section conversion.

zp2sos Zero-pole-gain to second-order section conversion.
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6sos2zpPurpose Second-order section to zero-pole-gain conversion.

Syntax [z,p,k] = sos2zp(sos)

Description sos2zp converts a second-order section representation of a given system to an 
equivalent zero-pole-gain representation.

[z,p,k] = sos2zp(sos) returns the zeros z, poles p, and gain k of the system 
given by sos in second-order section form. The second-order section format of 
H(z) is given by

where L is the number of rows of sos. sos is an L-by-6 matrix which contains 
the coefficients of each second-order section stored in its rows:

Column vectors z and p contain the zeros and poles of the transfer 
function H(z):

where the orders N and M are determined by the matrix sos. 
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Example Compute the poles, zeros, and gain of a simple system in second-order section 
form:

sos = [1  1  1  1  0 –1; –2  3  1  1 10  1];
[z,p,k] = sos2zp(sos)

z =

  –0.5000 + 0.8660i
  –0.5000 – 0.8660i
   1.7808
  –0.2808

p =

   –1.0000
    1.0000
   –9.8990
   –0.1010

k 

    –2

Algorithm sos2zp finds the roots and poles of each second-order section using the roots 
command. sos2zp returns the roots and poles with conjugate pairs in 
consecutive locations, with the order of the pairs determined by their row in the 
sos matrix. The gain k is the product of the gains of the sections:

See Also

k
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k
k
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sos2ss Second-order section to state-space conversion.

sos2tf Second-order section to transfer function conversion.

ss2sos State-space to second-order section conversion.

zp2sos Zero-pole-gain to second-order section conversion.
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6specgramPurpose Time-dependent frequency analysis (spectrogram).

Syntax B = specgram(a)
B = specgram(a,nfft)
[B,f] = specgram(a,nfft,Fs)
[B,f,t] = specgram(a,nfft,Fs)
B = specgram(a,nfft,Fs,window)
B = specgram(a,nfft,Fs,window,noverlap)
specgram(a)
B = specgram(a,f,Fs,window,noverlap)

Description specgram computes the windowed discrete-time Fourier transform of a signal 
using a sliding window. The spectrogram is the magnitude of this function.

B = specgram(a) calculates the spectrogram for the signal in vector a. This 
syntax uses the default values:

• nfft = min(256,length(a)) 

• Fs = 2 

• window = hanning(nfft) 

• noverlap = length(window)/2 

nfft specifies the FFT length that specgram uses. This value determines the 
frequencies at which the discrete-time Fourier transform is computed. Fs is a 
scalar that specifies the sampling frequency. window specifies a windowing 
function and the number of samples specgram uses in its sectioning of vector a. 
noverlap is the number of samples by which the sections overlap. Any 
arguments that you omit from the end of the input parameter list use the 
default values shown above.

If a is real, specgram computes the discrete-time Fourier transform at positive 
frequencies only. If n is even, specgram returns nfft/2+1 rows (including the 
zero and Nyquist frequency terms). If n is odd, specgram returns nfft/2 rows. 
The number of columns in B is

k = fix((n–noverlap)/(length(window)–noverlap))

If a is complex, specgram computes the discrete-time Fourier transform at both 
positive and negative frequencies. In this case, B is a complex matrix with nfft 
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rows. Time increases linearly across the columns of B, starting with sample 1 
in column 1. Frequency increases linearly down the rows, starting at 0. 

B = specgram(a,nfft) uses the specified FFT length nfft in its calculations. 
Specify nfft as a power of 2 for fastest execution.

[B,f] = specgram(a,nfft,Fs) returns a vector f of frequencies at which the 
function computes the discrete-time Fourier transform. Fs has no effect on the 
output B; it is a frequency scaling multiplier.

[B,f,t] = specgram(a,nfft,Fs) returns frequency and time vectors f and t 
respectively. t is a column vector of scaled times, with length equal to the 
number of columns of B. t(j) is the earliest time at which the j-th window 
intersects a. t(1) is always equal to 0.

B = specgram(a,nfft,Fs,window) specifies a windowing function and the 
number of samples per section of the x vector. If you supply a scalar for window, 
specgram uses a Hanning window of that length. The length of the window 
must be less than or equal to nfft; specgram zero pads the sections if the length 
of the window exceeds nfft.

B = specgram(a,nfft,Fs,window,noverlap) overlaps the sections of x by 
noverlap samples.

You can use the empty matrix [] to specify the default value for any input 
argument. For example,

B = specgram(x,[],10000)

is equivalent to

B = specgram(x)

but with a sampling frequency of 10,000 Hz instead of the default 2 Hz. 

specgram  with no output arguments displays the scaled logarithm of the 
spectrogram in the current figure window using

imagesc(t,f,20*log10(abs(b))),axis xy,colormap(jet)
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The axis xy mode displays the low-frequency content of the first portion of the 
signal in the lower-left corner of the axes. specgram uses Fs to label the axes 
according to true time and frequency.

B = specgram(a,f,Fs,window,noverlap) computes the spectrogram at the 
frequencies specified in f, using either the chirp z-transform (for more than 20 
evenly spaced frequencies) or a polyphase decimation filter bank. f is a vector 
of frequencies in Hertz; it must have at least two elements.

Algorithm specgram calculates the spectrogram for a given signal as follows:

1 It splits the signal into overlapping sections and applies the window 
specified by the window parameter to each section.

2 It computes the discrete-time Fourier transform of each section with a 
length nfft FFT to produce an estimate of the short-term frequency content 
of the signal; these transforms make up the columns of B. specgram zero 
pads the windowed sections if nfft > length(window), so the quantity 
(length(window) – noverlap) specifies by how many samples specgram 
shifts the window.

3 For real input, specgram truncates the spectrogram to the first nfft/2 + 1 
points for nfft even and (nfft + 1)/2 for nfft odd.
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Example Plot the spectrogram of a digitized speech signal:

load mtlb
specgram(mtlb,512,Fs,kaiser(500,5),475)

Diagnostics An appropriate diagnostic message is displayed when incorrect arguments are 
used:

Requires window's length to be no greater than the FFT length.
Requires NOVERLAP to be strictly less than the window length.
Requires positive integer values for NFFT and NOVERLAP.
Requires vector input.

See Also
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cohere Estimate magnitude squared coherence function 
between two signals.

csd Estimate the cross spectral density (CSD) of two 
signals.

psd Estimate the power spectral density (PSD) of a signal 
using Welch’s method.

tfe Transfer function estimate from input and output.
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References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 1989. Pgs. 713-718.

[2] Rabiner, L.R., and R.W. Schafer. Digital Processing of Speech Signals. 
Englewood Cliffs, NJ: Prentice Hall, 1978.
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6sptoolPurpose Interactive digital signal processing tool (SPTool).

Syntax sptool

Description The sptool command invokes a suite of graphical user interface (GUI) tools 
that provides access to many of the signal, filter, and spectral analysis 
functions in the toolbox in a powerful, easy-to-use interactive signal display 
and exploration environment. 

Using SPTool, you can import, export, and manage signals, filters, and spectra. 
From SPTool, you can activate its four integrated signal processing tools:

• The Signal Browser, for viewing, measuring, and analyzing time-domain 
information of imported signals:
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• The Filter Designer, for designing and editing FIR and IIR filters of various 
lengths and types, with standard (lowpass, highpass, bandpass, and 
bandstop) configurations:
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• The Filter Viewer, for viewing the characteristics of a designed or imported 
filter, including its magnitude response, phase response, group delay, 
pole-zero plot, impulse response, and step response:
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• The Spectrum Viewer, for graphical analysis of frequency-domain data using 
a variety of methods of spectral density estimation, including the Burg 
method, the FFT method, the multitaper method (MTM), the MUSIC 
eigenvector method, Welch’s method (PSD and CSD), and the Yule-Walker 
AR method:

See Chapter 5, “Interactive Tools” for a full discussion of how to use SPTool.
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6squarePurpose Square wave generator.

Syntax x = square(t)
x = square(t,duty)

Description square(t) generates a square wave with period  for the elements of time 
vector t. square(t) is similar to sin(t), but it creates a square wave with 
peaks of  instead of a sine wave.

square(t,duty) generates a square wave with specified duty cycle, duty. The 
duty cycle is the percent of the period in which the signal is positive.

See Also

2π

1±

chirp Swept-frequency cosine generator.

cos Cosine of vector/matrix elements (see the online 
MATLAB Function Reference).

diric Dirichlet or periodic sinc function.

gauspuls Gaussian-modulated sinusoidal pulse generator.

pulstran Pulse train generator.

rectpuls Sampled aperiodic rectangle generator.

sawtooth Sawtooth or triangle wave generator.

sin Sine of vector/matrix elements (see the online 
MATLAB Function Reference).

sinc Sinc or sin(πt)/πt function.

tripuls Sampled aperiodic triangle generator.
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6ss2sosPurpose State-space to second-order section conversion.

Syntax sos = ss2sos(A,B,C,D)
sos = ss2sos(A,B,C,D,iu)
sos = ss2sos(A,B,C,D,'order')
sos = ss2sos(A,B,C,D,iu,'order')

Description ss2sos converts a state-space representation of a given system to an 
equivalent second-order section representation.

sos = ss2sos(A,B,C,D) finds a matrix sos in second-order section form that 
is equivalent to the state-space system represented by input arguments A, B, C 
and D. The input system must be single input and real. sos is an L-by-6 matrix

whose rows contain the numerator and denominator coefficients bik and aik of 
the second-order sections of H(z):

sos = ss2sos(A,B,C,D,iu) specifies a scalar iu that determines which 
output of the state-space system A, B, C, D is used in the conversion. The default 
for iu is 1. 

sos = ss2sos(A,B,C,D,'order') and 

sos = ss2sos(A,B,C,D,iu,'order') specify the order of the rows in sos, 
where order is

• down, to order the sections so the first row of sos contains the poles closest to 
the unit circle

• up, to order the sections so the first row of sos contains the poles farthest 
from the unit circle (default)
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Example Find a second-order section form of a Butterworth lowpass filter:

[A,B,C,D] = butter(5,0.2);
sos = ss2sos(A,B,C,D)

sos =

    0.2451    0.2454         0    1.0000   -0.5095         0
    0.0647    0.1294    0.0647    1.0000   -1.0966    0.3554
    0.0809    0.1616    0.0807    1.0000   -1.3693    0.6926

Algorithm ss2sos uses a four-step algorithm to determine the second-order section 
representation for an input state-space system:

1 It finds the poles and zeros of the system given by A, B, C and D.

2 It uses the function zp2sos, which first groups the zeros and poles into 
complex conjugate pairs using the cplxpair function. zp2sos then forms 
the second-order sections by matching the pole and zero pairs according to 
the following rules:

a Match the poles closest to the unit circle with the zeros closest to those 
poles.

b Match the poles next closest to the unit circle with the zeros closest to 
those poles.

c Continue until all of the poles and zeros are matched.

ss2sos groups real poles into sections with the real poles closest to them in 
absolute value. The same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to the unit 
circle. ss2sos normally orders the sections with poles closest to the unit 
circle last in the cascade. You can tell ss2sos to order the sections in the 
reverse order by specifying the 'down' flag.

Putting “high Q” sections at the beginning of the cascade, by specifying the 
'down' flag, reduces the sensitivity of the filter response to quantization 
noise near those poles. Putting “high Q” sections at the end of the cascade 
(the default) prevents reduction in signal power level early in the cascade. 
ss2sos orders all-zero sections according to the minimum of |zi| and |zi

-1|, 
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where zi (i = 1, 2) are the zeros in the section. References [1] and [2] provide 
a detailed discussion of section ordering.

4 ss2sos scales the sections so the maximum of the magnitude of the transfer 
function of the first N sections in cascade is less than 1:

subject to the constraint that the overall gain, k, stays the same:

This scaling is an attempt to minimize overflow in some standard fixed point 
implementations of filtering.

Diagnostics If there is more than one input to the system, ss2sos gives the following error 
message:

State–space system must have only one input.

See Also

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 1989. Pgs. 363-370.

[2] Jackson, L.B. Digital Filters and Signal Processing. Second Ed. Boston: 
Kluwer Academic Publishers, 1989. Pgs. 319-324.
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cplxpair Group complex numbers into complex conjugate 
pairs.

sos2ss Second-order section to state-space conversion.

sos2tf Second-order section to transfer function conversion.

sos2zp Second-order section to zero-pole-gain conversion.

zp2sos Zero-pole-gain to second-order section conversion.
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6ss2tfPurpose State-space to transfer function conversion.

Syntax [num,den] = ss2tf(a,b,c,d,iu)

Description ss2tf converts a state-space representation of a given system to an equivalent 
transfer function representation.

[num,den] = ss2tf(a,b,c,d,iu) returns the transfer function

of the system

from the iu-th input. Vector den contains the coefficients of the denominator in 
descending powers of s. The numerator coefficients are returned in array num 
with as many rows as there are outputs y. The function tf2ss is the inverse of 
ss2tf. ss2tf also works with systems in discrete time, in which case it returns 
the z-transform representation.

Algorithm ss2tf uses poly to find the characteristic polynomial det(sI-A) and the equality

See Also
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ss2zp State-space to zero-pole-gain conversion.

tf2ss Transfer function to state-space conversion.

tf2zp Transfer function to zero-pole-gain conversion.

zp2ss Zero-pole-gain to state-space conversion.

zp2tf Zero-pole-gain to transfer function conversion.
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6ss2zpPurpose State-space to zero-pole-gain conversion.

Syntax [Z,p,k] = ss2zp(A,B,C,D,iu)

Description ss2zp converts a state-space representation of a given system to an equivalent 
zero-pole-gain representation. The zeros, poles, and gains of state-space 
systems represent the transfer function in factored form.

[Z,p,k] = ss2zp(A,B,C,D,iu) calculates the transfer function in factored 
form 

of the system 

from the iu-th input. Returned column vector p contains the pole locations of 
the denominator coefficients of the transfer function. Array Z contains the 
numerator zeros in its columns, with as many columns as there are outputs y. 
Column vector k contains the gains for each numerator transfer function.

The function zp2ss is the inverse of ss2zp. ss2zp also works with systems in 
discrete time, in which case it returns the z-transform representation. The 
input state-space system must be real.
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Example Here are two ways of finding the zeros, poles, and gains of a system:

num = [2 3]; 
den = [1 0.4 1];
[z,p,k] = tf2zp(num,den)

z =
–1.5000

p =
–0.2000 + 0.9798i
–0.2000 – 0.9798i

k =
2

[A,B,C,D] = tf2ss(num,den);
[z,p,k] = ss2zp(A,B,C,D,1)

z =
–1.5000

p =
–0.2000 + 0.9798i
–0.2000 – 0.9798i

k =
2

Algorithm ss2zp finds the poles from the eigenvalues of the A array. The zeros are the 
finite solutions to a generalized eigenvalue problem:

z = eig([A B;C D], diag([ones(1,n) 0]);

In many situations this algorithm produces spurious large, but finite, zeros. 
ss2zp interprets these large zeros as infinite.

ss2zp finds the gains by solving for the first nonzero Markov parameters.
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See Also

References [1] Laub, A.J., and B.C. Moore. “Calculation of Transmission Zeros Using QZ 
Techniques.” Automatica 14 (1978). Pg. 557.

pzmap Pole-zero map of LTI system (Control System Toolbox 
User’s Guide).

ss2tf State-space to transfer function conversion.

tf2ss Transfer function to state-space conversion.

zp2ss Zero-pole-gain to state-space conversion.
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6stmcbPurpose Linear model using Steiglitz-McBride iteration.

Syntax [b,a] = stmcb(x,nb,na)
[b,a] = stmcb(x,u,nb,na)
[b,a] = stmcb(x,nb,na,niter)
[b,a] = stmcb(x,u,nb,na,niter)
[b,a] = stmcb(x,nb,na,niter,ai)
[b,a] = stmcb(x,u,nb,na,niter,ai)

Description Steiglitz-McBride iteration is an algorithm for finding an IIR filter with a 
prescribed time domain impulse response. It has applications in both filter 
design and system identification (parametric modeling).

[b,a] = stmcb(x,nb,na) finds the coefficients b and a of the system b(z)/a(z) 
with approximate impulse response x, exactly nb zeros, and exactly na poles.

[b,a] = stmcb(x,u,nb,na) finds the system coefficients b and a of the system 
that, given u as input, has x as output. x and u must be the same length.

[b,a] = stmcb(x,nb,na,niter) and

[b,a] = stmcb(x,u,nb,na,niter) use niter iterations. The default for 
niter is 5.

[b,a] = stmcb(x,nb,na,niter,ai) and

[b,a] = stmcb(x,u,nb,na,niter,ai) use the vector ai as the initial 
estimate of the denominator coefficients. If ai is not specified, stmcb uses the 
output argument from [b,ai] = prony(x,0,na) as the vector ai.

stmcb returns the IIR filter coefficients in length nb+1 and na+1 row vectors b 
and a. The filter coefficients are ordered in descending powers of z:
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Example Approximate the impulse response of a Butterworth filter with a system of 
lower order:

[b,a] = butter(6,0.2);
h = filter(b,a,[1 zeros(1,100)]);
freqz(b,a,128)

[bb,aa] = stmcb(h,4,4);
freqz(bb,aa,128)
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Algorithm stmcb attempts to minimize the squared error between the impulse response x' 
of b(z)/a(z) and the input signal x:

stmcb iterates using two steps:

1 It prefilters x and u using 1/a(z).

2 It solves a system of linear equations for b and a using \.

stmcb repeats this process niter times. No checking is done to see if the b and 
a coefficients have converged in fewer than niter iterations.

Diagnostics If x and u have different lengths, stmcb gives the following error message:

X and U must have same length.

See Also

References [1] Steiglitz, K., and L.E. McBride. “A Technique for the Identification of Linear 
Systems.” IEEE Trans. Automatic Control. Vol. AC-10 (1965). Pgs. 461-464.

[2] Ljung, L. System Identification: Theory for the User. Englewood Cliffs, NJ: 
Prentice Hall, 1987. Pg. 297.
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levinson Levinson-Durbin recursion.

lpc Linear prediction coefficients.

oe Compute the prediction error estimate of an 
output-error model (see System Identification 
Toolbox User’s Guide).

prony Prony’s method for time domain IIR filter design.
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6stripsPurpose Strip plot.

Syntax strips(x)
strips(x,n)
strips(x,sd,Fs)
strips(x,sd,Fs,scale)

Description strips(x) plots vector x in horizontal strips of length 250. If x is a matrix, 
strips(x) plots each column of x. The left-most column (column 1) is the top 
horizontal strip.

strips(x,n) plots vector x in strips that are each n samples long.

strips(x,sd,Fs) plots vector x in strips of duration sd seconds, given a 
sampling frequency of Fs samples per second.

strips(x,sd,Fs,scale) scales the vertical axes.

If x is a matrix, strips(x,n), strips(x,sd,Fs), and strips(x,sd,Fs,scale) 
plot the different columns of x on the same strip plot.

strips ignores the imaginary part of x if it is complex.
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Example Plot two seconds of a frequency modulated sinusoid in 0.25 second strips:

Fs = 1000; % sampling frequency
t = 0:1/Fs:2; % time vector
x = vco(sin(2*pi*t),[10 490],Fs); % FM waveform
strips(x,0.25,Fs)

See Also
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plot Linear two-dimensional plot (see the online MATLAB 
Function Reference).

stem Plot discrete sequence data (see the online MATLAB 
Function Reference).
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6tf2latcPurpose Transfer function to lattice filter conversion.

Syntax [k,v] = tf2latc(num,den)
k = tf2latc(1,den)
[k,v] = tf2latc(1,den)
k = tf2latc(num)

Description [k,v] = tf2latc(num,den) finds the lattice parameters k and the ladder 
parameters v for an IIR (ARMA) lattice-ladder filter, normalized by den(1). 
Note that an error will be generated if any poles of the transfer function lie on 
the unit circle.

k = tf2latc(1,den) finds the lattice parameters k for an IIR all-pole (AR) 
lattice filter.

[k,v] = tf2latc(1,den) returns a scalar ladder coefficient v.

k = tf2latc(num) finds the lattice parameters k for an FIR (MA) lattice filter, 
normalized by num(1).

The function latc2tf is the inverse of tf2latc.

See Also latc2tf Lattice filter to transfer function conversion.

latcfilt Lattice and lattice-ladder filter implementation.

poly2rc Reflection coefficients from polynomial coefficients.

rc2poly Polynomial coefficients from reflection coefficients.
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6tf2ssPurpose Transfer function to state-space conversion.

Syntax [A,B,C,D] = tf2ss(num,den)

Description tf2ss converts a transfer function representation of a given system to an 
equivalent state-space representation.

[A,B,C,D] = tf2ss(num,den) finds a state-space representation:

given a system in transfer function form:

from a single input. Input vector den contains the denominator coefficients in 
descending powers of s. Array num contains the numerator coefficients with as 
many rows as there are outputs y. tf2ss returns the A, B, C, and D matrices in 
controller canonical form. 

tf2ss also works for discrete systems, but you must pad the numerator with 
trailing zeros to make it the same length as the denominator.

The function ss2tf is the inverse of tf2ss.

Example Consider the system
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To convert this system to state-space:

num = [0 2 3; 1 2 1];
den = [ 1 0.4 1];
[A,B,C,D] = tf2ss(num,den)

A =
   –0.4000   –1.0000
    1.0000         0

B =
     1
     0

C =
    2.0000    3.0000
    1.6000         0

D =
     0
     1

There is disagreement in the literature on naming conventions for the 
canonical forms. It is easy, however, to generate similarity transformations 
that convert to other forms. For example:

T = fliplr(eye(n));
A = T\A*T;

Algorithm tf2ss writes the output in controller canonical form by inspection.

See Also ss2tf State-space to transfer function conversion.

ss2zp State-space to zero-pole-gain conversion.

tf2zp Transfer function to zero-pole-gain conversion.

zp2ss Zero-pole-gain to state-space conversion.

zp2tf Zero-pole-gain to transfer function conversion.
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6tf2zpPurpose Transfer function to zero-pole-gain conversion. 

Syntax [z,p,k] = tf2zp(num,den) 

Description tf2zp finds the zeros, poles, and gains of a system in polynomial transfer 
function form. 

[z,p,k] = tf2zp(num,den) finds the single-input, multi-output (SIMO) 
factored transfer function form:

given a SIMO system in polynomial transfer function form:

Vector den specifies the coefficients of the denominator in descending powers 
of s. Matrix num indicates the numerator coefficients with as many rows as 
there are outputs. The zero locations are returned in the columns of matrix z, 
with as many columns as there are rows in num. The pole locations are returned 
in column vector p and the gains for each numerator transfer function in 
vector k. 

tf2zp also works for discrete systems. The function zp2tf is the inverse of 
tf2zp.
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Example Find the zeros, poles, and gains of the system 

num = [2 3];
den = [1 0.4 1];
[z,p,k] = tf2zp(num,den) 

z =

   –1.5000

p =

   –0.2000 + 0.9798i
   –0.2000 – 0.9798i

k =

   2

Algorithm The system is converted to state-space using tf2ss and then to zeros, poles, 
and gains using ss2zp. 

See Also
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s s
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.
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+ +
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0 4 12

ss2tf State-space to transfer function conversion.

ss2zp State-space to zero-pole-gain conversion.

tf2ss Transfer function to state-space conversion.

zp2ss Zero-pole-gain to state-space conversion.

zp2tf Zero-pole-gain to transfer function conversion.
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6tfePurpose Transfer function estimate from input and output.

Syntax Txy = tfe(x,y)
Txy = tfe(x,y,nfft)
[Txy,f] = tfe(x,y,nfft,Fs)
Txy = tfe(x,y,nfft,Fs,window)
Txy = tfe(x,y,nfft,Fs,window,noverlap)
Txy = tfe(x,y,...,'dflag')
tfe(x,y)

Description Txy = tfe(x,y) finds a transfer function estimate Txy given input signal 
vector x and output signal vector y. The transfer function is the quotient of the 
cross spectrum of x and y and the power spectrum of x:

The relationship between the input x and output y is modeled by the linear, 
time-invariant transfer function Txy.

Vectors x and y must be the same length. Txy = tfe(x,y) uses the following 
default values:

• nfft = min(256,(length(x)) 

• Fs = 2 

• window = hanning(nfft) 

• noverlap = 0 

nfft specifies the FFT length that tfe uses. This value determines the 
frequencies at which the power spectrum is estimated. Fs is a scalar that 
specifies the sampling frequency. window specifies a windowing function and 
the number of samples tfe uses in its sectioning of the x and y vectors. 
noverlap is the number of samples by which the sections overlap. Any 
arguments that omitted from the end of the parameter list use the default 
values shown above.

If x is real, tfe estimates the transfer function at positive frequencies only; in 
this case, the output Txy is a column vector of length nfft/2+1 for nfft even 
and (nfft+1)/2 for n odd. If x or y is complex, tfe estimates the transfer 
function for both positive and negative frequencies and Txy has length nfft.

T f
P f

P fxy
xy

xx
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Txy = tfe(x,y,nfft) uses the specified FFT length nfft in estimating the 
transfer function. Specify nfft as a power of 2 for fastest execution.

[Txy,f] = tfe(x,y,nfft,Fs) returns a vector f of frequencies at which tfe 
estimates the transfer function. Fs is the sampling frequency. f is the same size 
as Txy, so plot(f,Txy) plots the transfer function estimate versus properly 
scaled frequency. Fs has no effect on the output Txy; it is a frequency scaling 
multiplier.

Txy = tfe(x,y,nfft,Fs,window) specifies a windowing function and the 
number of samples per section of the x vector. If you supply a scalar for window, 
Txy uses a Hanning window of that length. The length of the window must be 
less than or equal to nfft; tfe zero pads the sections if the length of the window 
exceeds nfft.

Txy = tfe(x,y,nfft,Fs,window,noverlap) overlaps the sections of x by 
noverlap samples.

You can use the empty matrix [] to specify the default value for any input 
argument except x or y. For example,

Txy = tfe(x,y,[],[],kaiser(128,5))

uses 256 as the value for nfft and 2 as the value for Fs.

Txy = tfe(x,y,...,'dflag') specifies a detrend option, where dflag is

• linear, to remove the best straight-line fit from the prewindowed sections of 
x and y

• mean, to remove the mean from the prewindowed sections of x and y

• none, for no detrending (default)

The dflag parameter must appear last in the list of input arguments. tfe 
recognizes a dflag string no matter how many intermediate arguments are 
omitted.

tfe with no output arguments plots the magnitude of the transfer function 
estimate in decibels versus frequency in the current figure window. 
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Example Compute and plot the transfer function estimate between two colored noise 
sequences x and y:

h = fir1(30,0.2,boxcar(31));
x = randn(16384,1);
y = filter(h,1,x);
tfe(x,y,1024,[],[],512)

Algorithm tfe uses a four-step algorithm:

1 It multiplies the detrended sections by window.

2 It takes the length nfft FFT of each section. 

3 It averages the squares of the spectra of the x sections to form Pxx and 
averages the products of the spectra of the x and y sections to form Pxy. 

4 It calculates Txy:
Txy = Pxy./Pxx

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Frequency

T
ra

nf
er

 F
un

ct
io

n 
E

st
im

at
e 

(d
B

)

Transfer Function Estimate
6-313



tfe
Diagnostics An appropriate diagnostic message is displayed when incorrect arguments are 
used:

Requires window's length to be no greater than the FFT length.
Requires NOVERLAP to be strictly less than the window length.
Requires positive integer values for NFFT and NOVERLAP.
Requires vector (either row or column) input.
Requires inputs X and Y to have the same length.

See Also etfe Compute empirical transfer function estimate and 
periodogram (see System Identification Toolbox 
User’s Guide).

cohere Estimate magnitude squared coherence function 
between two signals.

csd Estimate the cross spectral density (CSD) of two 
signals.

psd Estimate the power spectral density (PSD) of a signal 
using Welch’s method.

spa Perform spectral analysis for input-output data (see 
System Identification Toolbox User’s Guide).
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6triangPurpose Triangular window.

Syntax w = triang(n)

Description triang(n) returns an n-point triangular window in the column vector w. The 
coefficients of a triangular window are

For n odd:

For n even:

The triangular window is very similar to a Bartlett window. The Bartlett 
window always ends with zeros at samples 1 and n, while the triangular 
window is nonzero at those points. For n odd, the center n–2 points of 
triang(n–2) are equivalent to bartlett(n).

See Also

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice-Hall, 1989.
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bartlett Bartlett window.

blackman Blackman window.

boxcar Rectangular window.

chebwin Chebyshev window.

hamming Hamming window.

hanning Hanning window.

kaiser Kaiser window.
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6tripulsPurpose Sampled aperiodic triangle generator.

Syntax y = tripuls(T)
y = tripuls(T,w)
y = tripuls(T,w,s)

Description y = tripuls(T) returns a continuous, aperiodic, symmetric, unity-height 
triangular pulse at the times indicated in array T, centered about T=0 and with 
a default width of 1.

y = tripuls(T,w) generates a triangle of width w. 

y = tripuls(T,w,s) generates a triangle with skew s, where
–1 < s < 1. When s is 0, a symmetric triangle is generated. 

See Also chirp Swept-frequency cosine generator.

cos Cosine of vector/matrix elements (see the online 
MATLAB Function Reference).

diric Dirichlet or periodic sinc function.

gauspuls Gaussian-modulated sinusoidal pulse generator.

pulstran Pulse train generator.

rectpuls Sampled aperiodic rectangle generator.

sawtooth Sawtooth or triangle wave generator.

sin Sine of vector/matrix elements (see the online 
MATLAB Function Reference).

sinc Sinc or sin(πt)/πt function.

square Square wave generator.
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6unwrapPurpose Unwrap phase angles.

Syntax p = unwrap(p)

Description p = unwrap(p) corrects the phase angles in vector p by adding multiples of 
, where needed, to smooth the transitions across branch cuts. When p is a 

matrix, unwrap corrects the phase angles down each column. The phase must 
be in radians.

This function is part of the standard MATLAB environment.

Limitations unwrap tries to detect branch cut crossings, but it can be fooled by sparse, 
rapidly changing phase values.

See Also

2π±

abs Absolute value (magnitude).

angle Phase angle.
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6upfirdnPurpose Upsample, apply an FIR filter, and downsample.

Syntax yout = upfirdn(xin,h)
yout = upfirdn(xin,h,p)
yout = upfirdn(xin,h,p,q)

Description upfirdn performs a cascade of three operations:

1 Upsampling by p (zero inserting)

2 FIR filtering with the impulse response given in h

3 Downsampling by q (throwing away samples)

upfirdn has been implemented as a MEX-file for maximum speed, so only the 
outputs actually needed are computed. The FIR filter is usually a lowpass 
filter, which you must design using another function such as remez or fir1.

NOTE  The function resample performs an FIR design using fir1, followed by 
rate changing implemented with upfirdn.

yout = upfirdn(xin,h) returns the output signal yout. If yout is a row or 
column vector, then it represents one signal; if yout is an array, then each 
column is a separate output. xin is the input signal. If xin is a row or column 
vector, then it represents one signal; if xin is an array, then each column is 
filtered. h is the impulse response of the FIR filter. If h is a row or column 
vector, then it represents one filter; if h is an array, then each column is a 
separate impulse response.

yout = upfirdn(xin,h,p) specifies the upsampling factor p. p is an integer 
with a default of 1.

yout = upfirdn(xin,h,p,q) specifies the downsampling factor q. q is an 
integer with a default of 1.
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NOTE  Since upfirdn performs convolution and rate changing, the yout 
signals have a different length than xin. The length of y[n] is approximately
p/q times the length of x[n].

Remarks Usually the inputs xin and the filter h are vectors, in which case only one 
output signal is produced. However, when these arguments are arrays, each 
column is treated as a separate signal or filter. Valid combinations are

1 xin is a vector and h is a vector.

There is one filter and one signal, so the function convolves xin with h. The 
output signal yout is a row vector if xin is a row; otherwise, it is a column 
vector.

2 xin is an array and h is a vector.

There is one filter and many signals, so the function convolves h with each 
column of xin. The resulting yout will be an array with the same number of 
columns as xin.

3 xin is a vector and h is an array.

There are many filters and one signal, so the function convolves each column 
of h with xin. The resulting yout will be an array with the same number of 
columns as h.

4 xin is an array and h is an array, both with the same number of columns.

There are many filters and many signals, so the function convolves 
corresponding columns of xin and h. The resulting yout is an array with the 
same number of columns as xin and h.

Examples If both p and q are equal to 1 (that is, there is no rate changing), the result is 
ordinary convolution of two signals (equivalent to conv):

yy = upfirdn(xx,hh);

This example implements a seven-channel filter bank by convolving seven 
different filters with one input signal, then downsamples by five:

% Assume that hh is an L-by-7 array of filters.
yy = upfirdn(xx,hh,1,5);
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Implement a rate change from 44.1 kHz (CD sampling rate) to 48 kHz (DAT 
rate), a ratio of 160/147. This requires a lowpass filter with cutoff frequency at 
ωc = 2π/160:

% Design lowpass filter with cutoff at 1/160th of Fs.
hh = fir1(300,2/160); % need a very long lowpass filter
yy = upfirdn(xx,hh,160,147);

In this example, the filter design and resampling are separate steps. Note that 
resample would do both steps as one.

Algorithm upfirdn uses a polyphase interpolation structure. The number of multiply-add 
operations in the polyphase structure is approximately (LhLx-pLx)/q where Lh 
and Lx are the lengths of h[n] and x[n], respectively.

A more accurate flops count is computed in the program, but the actual count 
is still approximate. For long signals x[n], the formula is quite often exact.

Diagnostics There must be one output argument and at least two input arguments. If either 
of these conditions are violated, upfirdn gives the appropriate error message:

UPFIRDN needs at least two input arguments.
UPFIRDN should have exactly one output argument.

If the arrays are sparse, upfirdn gives the error message

H must be full numeric matrix.

When the input signals are in the columns of a matrix and there are multiple 
filters also in the columns of a matrix, the number of signals and filters must 
be the same. If they are not, upfirdn gives the error message

X and H must have the same number of columns, if more than one.

The arguments p and q must be integers. If they are not, upfirdn gives the 
error message

P and/or Q must be greater than zero

If the arguments p and q are not relatively prime, upfirdn gives the warning 
message

WARNING (upfirdn) p & q have common factor
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See Also

References [1] Crochiere, R.E., and L.R. Rabiner. Multi-Rate Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 1983. Pgs. 88-91.

[2] Crochiere, R.E. “A General Program to Perform Sampling Rate Conversion 
of Data by Rational Ratios.” In Programs for Digital Signal Processing. IEEE 
Press. New York: John Wiley & Sons, 1979. Pgs. 8.2-1 to 8.2-7.

conv Convolution and polynomial multiplication.

decimate Decrease the sampling rate for a sequence 
(decimation).

filter Filter data with a recursive (IIR) or nonrecursive 
(FIR) filter.

interp Increase sampling rate by an integer factor 
(interpolation).

intfilt Interpolation FIR filter design.

resample Change sampling rate by any factor.
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6vcoPurpose Voltage controlled oscillator.

Syntax y = vco(x,Fc,Fs)
y = vco(x,[Fmin Fmax],Fs)

Description y = vco(x,Fc,Fs) creates a signal that oscillates at a frequency determined 
by the real input vector or array x with sampling frequency Fs. Fc is the carrier 
or reference frequency; when x is 0, y is an Fc Hz cosine with amplitude 1 
sampled at Fs Hz. x ranges from -1 to 1, where -1 corresponds to a 0 frequency 
output, 0 to Fc, and 1 to 2*Fc. y is the same size as x.

y = vco(x,[Fmin Fmax],Fs) scales the frequency modulation range so that 
-1 and 1 values of x yield oscillations of Fmin Hz and Fmax Hz respectively. For 
best results, Fmin and Fmax should be in the range 0 to Fs/2.

By default, Fs is 1 and Fc is Fs/4.

If x is a matrix, vco produces a matrix whose columns oscillate according to the 
columns of x.

Example Generate two seconds of a signal sampled at 10,000 samples/second whose 
instantaneous frequency is a triangle function of time:

Fs = 10000;
t = 0:1/Fs:2;
x = vco(sawtooth(2*pi*t,0.75),[.1 0.4]*Fs,Fs);
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Plot the spectrogram of the generated signal.

specgram(x,512,Fs,kaiser(256,5),220)

Algorithm vco performs FM modulation using the modulate function.

Diagnostics If any values of x lie outside [-1,1], vco gives the following error message:

X outside of range [–1,1].

See Also
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6xcorrPurpose Cross-correlation function estimate.

Syntax c = xcorr(x,y)
c = xcorr(x)
c = xcorr(x,y,'option')
c = xcorr(x,y,maxlags)
c = xcorr(x,y,maxlags,'option')
[c,lags] = xcorr(x,y)
[c,lags] = xcorr(x,y,maxlags)
[c,lags] = xcorr(x,y,maxlags,'option')

Description xcorr estimates the cross-correlation sequence of random processes. 
Autocorrelation is handled as a special case.

The true cross-correlation sequence is

where xn and yn are stationary random processes, , and E {} is the 
expected value operator. xcorr must estimate the sequence because, in 
practice, access is available to only a finite segment of the infinite-length 
random process.

c = xcorr(x,y) returns the cross-correlation sequence in a length 2N-1 
vector, where x and y are length N vectors.

c = xcorr(x) is the autocorrelation sequence for the vector x. Where x is an 
N-by-P matrix, c = xcorr(X) returns a matrix with 2N-1 rows whose P2 
columns contain the cross-correlation sequences for all combinations of the 
columns of X.

By default, xcorr computes raw correlations with no normalization. For a 
length N vector:
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The output vector c has elements given by c(m) = cxy(m-N), m=1,...,2N-1.

The correlation function requires normalization to estimate the function 
properly.

c = xcorr(x,y,'option') specifies a scaling option, where 'option' is

• biased, for biased estimates of the cross-correlation function:

• unbiased, for unbiased estimates of the cross-correlation function:

• coeff, to normalize the sequence so the autocorrelations at zero lag are 
identically 1.0

• none, to use the raw, unscaled cross-correlations (default)

See reference [1] for more information on the properties of biased and unbiased 
correlation estimates.

[c,lags] = xcorr(x,y) where x and y are length N vectors, returns the 
cross-correlation sequence in a length 2N–1 vector and the output lags in the 
vector [–N+1:N–1]. That is, the maximum lag is N–1.

[c,lags] = xcorr(x,y,maxlags) where x and y are length N vectors, returns 
the cross-correlation sequence in a length 2*maxlags+1 vector c. lags is a 
vector of the lag indices where c was estimated, that is, [–maxlags:maxlags].

[c,lags] = xcorr(x,maxlags) returns the autocorrelation sequence over the 
lag range [–maxlags:maxlags].

[c,lags] = xcorr(X,maxlags) where x is an M-by-P matrix, is a matrix with 
2*maxlags+1 rows whose P2 columns contain the cross-correlation sequences 
for all combinations of the columns of X.

c m
N

c mxy biased xy, ( ) ( )= 1

c m
N m

c mxy unbiased xy, ( ) ( )=
−
1
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[c,lags] = xcorr(x,maxlags,'option') and

[c,lags] = xcorr(x,y,maxlags,'option') specifies both a maximum 
number of lags and a scaling option.

In all cases, xcorr gives an output such that the zeroth lag of the correlation 
vector is in the middle of the sequence, at element or row maxlags+1 or at N.

Examples The second output lags is useful when plotting. For example, the estimated 
autocorrelation of zero-mean Gaussian white noise cww(m) can be displayed for 
-10 ≤ m ≤ 10 using

ww = randn(1000,1);
[c_ww,lags] = xcorr(ww,10,'coeff');
stem(lags,c_ww)

Swapping the x and y input arguments reverses (and conjugates) the output 
correlation sequence. For row vectors, the resulting sequences are reversed left 
to right; for column vectors, up and down. The following example illustrates 
this property (mat2str is used for a compact display of complex numbers):

x = [1,2i,3]; y = [4,5,6];
[c1,lags] = xcorr(x,y);
c1 = mat2str(c1,2), lags

c1 =

    [12+i*8.9e–016 15+i*8 22+i*10 5+i*12 6–i*8.9e–016]

lags =

    -2    -1     0     1     2

c2 = conj(fliplr(xcorr(y,x)));
c2 = mat2str(c2,2)

c2 =

    [12+i*8.9e-016 15+i*8 22+i*10 5+i*12 6-i*8.9e-016]

For the case where input argument x is a matrix, the output columns are 
arranged so that extracting a row and rearranging it into a square array 
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produces the cross-correlation matrix corresponding to the lag of the chosen 
row. For example, the cross-correlation at zero lag can be retrieved by

randn('seed',0)
X = randn(2,2);
[M,P] = size(X);
c = xcorr(X);
c0 = zeros(P); c0(:) = c(M,:)   % Extract zero-lag row

c0 = 

    1.7500    0.3079
    0.3079    0.1293

You can calculate the matrix of correlation coefficients that the MATLAB 
function corrcoef generates by substituting 

c = xcov(X,'coef')

in the last example. The function xcov subtracts the mean and then calls 
xcorr.

Use fftshift to move the second half of the sequence starting at the zeroth lag 
to the front of the sequence. fftshift swaps the first and second halves of a 
sequence.

Algorithm For more information on estimating covariance and correlation functions, see 
[1] and [2].

Diagnostics There must be at least one vector input argument; otherwise, xcorr gives the 
following error message:

1st arg must be a vector or matrix.

The string 'option' must be the last argument; otherwise, xcorr gives the 
following error message:

Argument list not in correct order.

If the second argument was entered as a scalar, it is taken to be maxlag and no 
succeeding input can be a scalar. When the second argument is a vector, the 
first must also be a signal vector. The third argument, when present, must be 
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a scalar or a string. If they are not, xcorr gives the appropriate error 
message(s):

3rd arg is maxlag, 2nd arg cannot be scalar.
When b is a vector, a must be a vector.
Maxlag must be a scalar.

Normally the lengths of the vector inputs should be the same; if they are not, 
then the only allowable scaling option is 'none'. If it is not, xcorr gives the 
following error message:

OPTION must be 'none' for different length vectors A and B.

See Also

References [1] Bendat, J.S., and A.G. Piersol. Random Data: Analysis and Measurement 
Procedures. New York: John Wiley & Sons, 1971. Pg. 332.

[2] Oppenheim, A.V., and R.W. Schafer. Digital Signal Processing. Englewood 
Cliffs, NJ: Prentice Hall, 1975. Pgs. 63-67, 746-747, 839-842.

conv Convolution and polynomial multiplication.

corrcoef Correlation coefficient matrix.

cov Covariance matrix.

xcorr2 Two-dimensional cross-correlation.

xcov Cross-covariance function estimate (equal to 
mean-removed cross-correlation).
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6xcorr2Purpose Two-dimensional cross-correlation.

Syntax C = xcorr2(A)
C = xcorr2(A,B)

Description C = xcorr2(A,B) returns the cross-correlation of matrices A and B with no 
scaling. xcorr2 is the two-dimensional version of xcorr. It has its maximum 
value when the two matrices are aligned so that they are shaped as similarly 
as possible.

xcorr2(A) is the autocorrelation matrix of input matrix A. It is identical to 
xcorr2(A,A).

See Also conv2 Two-dimensional convolution.

filter2 Two-dimensional digital filtering.

xcorr Cross-correlation function estimate.
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6xcovPurpose Cross-covariance function estimate (equal to mean-removed cross-correlation).

Syntax v = xcov(x,y)
v = xcov(x)
v = xcov(x,'option')
[c,lags] = xcov(x,y,maxlags)
[c,lags] = xcov(x,maxlags)
[c,lags] = xcov(x,y,maxlags,'option')

Description xcov estimates the cross-covariance sequence of random processes. 
Autocovariance is handled as a special case.

The true cross-covariance sequence is the mean-removed cross-correlation 
sequence

where mx and my are the mean values of the two stationary random processes, 
and E{} is the expected value operator. xcov estimates the sequence because, 
in practice, access is available to only a finite segment of the infinite-length 
random process.

v = xcov(x,y) returns the cross-covariance sequence in a length 2N-1 vector, 
where x and y are length N vectors.

v = xcov(x) is the autocovariance sequence for the vector x. Where x is an 
N-by-P array, v = xcov(X) returns am array with 2N-1 rows whose P2 columns 
contain the cross-covariance sequences for all combinations of the columns of X.

By default, xcov computes raw covariances with no normalization. For a length 
N vector:
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The output vector c has elements given by c(m) = cxy(m-N), m=1,...,2N-1.

The covariance function requires normalization to estimate the function 
properly.

v = xcov(x,'option') specifies a scaling option, where option is

• biased, for biased estimates of the cross-covariance function

• unbiased, for unbiased estimates of the cross-covariance function

• coeff, to normalize the sequence so the auto-covariances at zero lag are 
identically 1.0

• none, to use the raw, unscaled cross-covariances (default)

See [1] for more information on the properties of biased and unbiased 
correlation and covariance estimates.

[c,lags] = xcov(x,y,maxlags) where x and y are length m vectors, returns 
the cross-covariance sequence in a length 2*maxlags+1 vector c. lags is a 
vector of the lag indices where c was estimated, that is, [–maxlags:maxlags].

[c,lags] = xcov(x,maxlags) is the autocovariance sequence over the range 
of lags [–maxlags:maxlags].

[c,lags] = xcov(x,maxlags) where x is an m-by-p array, returns array c 
with 2*maxlags+1 rows whose P2 columns contain the cross-covariance 
sequences for all combinations of the columns of X.

[c,lags] = xcov(x,y,maxlags,'option') specifies a scaling option, where 
option is the last input argument.

In all cases, xcov gives an output such that the zeroth lag of the covariance 
vector is in the middle of the sequence, at element or row maxlag+1 or at m.

Examples The second output lags is useful when plotting. For example, the estimated 
autocovariance of uniform white noise cww(m) can be displayed for -10 ≤ m ≤ 10 
using

ww = randn(1000,1); % generate uniform noise with mean = 1/2
[cov_ww,lags] = xcov(ww,10,'coeff');
stem(lags,cov_ww)
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Algorithm xcov computes the mean of its inputs, subtracts the mean, and then calls 
xcorr. For more information on estimating covariance and correlation 
functions, see [1] and [2].

Diagnostics xcov does not check for any errors other than the correct number of input 
arguments. Instead, it relies on the error checking in xcorr, which it calls.

See Also

References [1] Bendat, J.S., and A.G. Piersol. Random Data: Analysis and Measurement 
Procedures. New York: John Wiley & Sons, 1971. Pg. 332.

[2] Oppenheim, A.V., and R.W. Schafer. Digital Signal Processing. Englewood 
Cliffs, NJ: Prentice Hall, 1975. Pgs. 63-67, 746-747, 839-842.

conv Convolution and polynomial multiplication.

corrcoef Correlation coefficient matrix.

cov Covariance matrix.

xcorr Cross-correlation function estimate.

xcorr2 Two-dimensional cross-correlation.
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6yulewalkPurpose Recursive digital filter design.

Syntax [b,a] = yulewalk(n,f,m)

Description yulewalk designs recursive IIR digital filters using a least-squares fit to a 
specified frequency response.

[b,a] = yulewalk(n,f,m) returns row vectors b and a containing the n+1 
coefficients of the order n IIR filter whose frequency-magnitude characteristics 
approximately match those given in vectors f and m:

• f is a vector of frequency points, specified in the range between 0 and 1, 
where 1 corresponds to half the sample frequency (the Nyquist frequency). 
The first point of f must be 0 and the last point 1, with all intermediate 
points in increasing order. Duplicate frequency points are allowed, 
corresponding to steps in the frequency response.

• m is a vector containing the desired magnitude response at the points 
specified in f.

• f and m must be the same length.

• plot(f,m) displays the filter shape.

The output filter coefficients are ordered in descending powers of z,

When specifying the frequency response, avoid excessively sharp transitions 
from passband to stopband. You may need to experiment with the slope of the 
transition region to get the best filter design.

Example Design an 8th-order lowpass filter and overplot the desired frequency response 
with the actual frequency response:

f = [0 0.6 0.6 1];
m = [1 1 0 0];
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[b,a] = yulewalk(8,f,m);
[h,w] = freqz(b,a,128);
plot(f,m,w/pi,abs(h),'--')

Algorithm yulewalk performs a least-squares fit in the time domain. It computes the 
denominator coefficients using modified Yule-Walker equations, with 
correlation coefficients computed by inverse Fourier transformation of the 
specified frequency response. To compute the numerator, yulewalk takes the 
following steps:

1 Computes a numerator polynomial corresponding to an additive 
decomposition of the power frequency response.

2 Evaluates the complete frequency response corresponding to the numerator 
and denominator polynomials.

3 Uses a spectral factorization technique to obtain the impulse response of the 
filter.

4 Obtains the numerator polynomial by a least-squares fit to this impulse 
response.
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See Also

References [1] Friedlander, B., and B. Porat. “The Modified Yule-Walker Method of ARMA 
Spectral Estimation.” IEEE Transactions on Aerospace Electronic Systems. 
AES-20, No. 2 (March 1984). Pgs. 158-173.

butter Butterworth analog and digital filter design.

cheby1 Chebyshev type I filter design (passband ripple).

cheby2 Chebyshev type II filter design (stopband ripple).

ellip Elliptic (Cauer) filter design.

fir2 Window-based finite impulse response filter design—
arbitrary response.

firls Least square linear-phase FIR filter design.

maxflat Generalized digital Butterworth filter design.

remez Parks-McClellan optimal FIR filter design.
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6zp2sosPurpose Zero-pole-gain to second-order section conversion.

Syntax sos = zp2sos(z,p,k)
sos = zp2sos(z,p,k,'order')

Description zp2sos converts a zero-pole-gain representation of a given system to an 
equivalent second-order section representation.

sos = zp2sos(z,p,k) finds a matrix sos in second-order section form 
equivalent to the zero-pole-gain system represented by input arguments z, p, 
and k. Vectors z and p contain the zeros and poles of the system H(z), not 
necessarily in any order:

k is a scalar gain. The zeros and poles must be real or come in complex 
conjugate pairs. sos is an L-by-6 matrix:

whose rows contain the numerator and denominator coefficients bik and aik of 
the second-order sections of H(z):

The number of rows L of matrix sos is the maximum of the ceiling of N/2 and 
the ceiling of M/2, where N and M are the lengths of z and p, respectively.
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sos = zp2sos(z,p,k,'order') specifies the order of the rows in sos, where 
order is

• down, to order the sections so the first row of sos contains the poles closest to 
the unit circle

• up, to order the sections so the first row of sos contains the poles farthest 
from the unit circle (default)

Example Find a second-order section form of a Butterworth lowpass filter:

[z,p,k] = butter(5,0.2);
sos = zp2sos(z,p,k);

Algorithm zp2sos uses a four-step algorithm to determine the second-order section 
representation for an input zero-pole-gain system:

1 It groups the zeros and poles into complex conjugate pairs using the 
cplxpair function. 

2 It forms the second-order section by matching the pole and zero pairs 
according to the following rules:

a Match the poles closest to the unit circle with the zeros closest to those 
poles.

b Match the poles next closest to the unit circle with the zeros closest to 
those poles.

c Continue until all of the poles and zeros are matched.

zp2sos groups real poles into sections with the real poles closest to them in 
absolute value. The same rule holds for real zeros.

3 It orders the sections according to the proximity of the pole pairs to the unit 
circle. zp2sos normally orders the sections with poles closest to the unit 
circle last in the cascade. You can tell zp2sos to order the sections in the 
reverse order by specifying the down flag.

Putting “high Q” sections at the beginning of the cascade, by specifying the 
down flag, reduces the response sensitivity of the filter to quantization noise 
near those poles. Putting “high Q” sections at the end of the cascade (the 
default) prevents reduction in signal power level early in the cascade. 
zp2sos orders all zero sections according to the minimum of |zi| and |zi

-1| 
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where zi (for i = 1, 2) are the zeros in the section. References [1] and [2] 
provide detailed discussions of section ordering.

4 zp2sos scales the sections so the maximum of the magnitude of the transfer 
function of the first N sections in cascade is less than 1:

subject to the constraint that the overall gain, k, stays the same:

This scaling is an attempt to minimize overflow in some standard fixed point 
implementations of filtering.

See Also

References [1] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 1989. Pgs. 363-370.

[2] Jackson, L.B. Digital Filters and Signal Processing. Third Ed. Boston: 
Kluwer Academic Publishers, 1989. Pgs. 319-324.
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cplxpair Group complex numbers into complex conjugate 
pairs.

sos2ss Second-order section to state-space conversion.

sos2tf Second-order section to transfer function conversion.

sos2zp Second-order section to zero-pole-gain conversion.

ss2sos State-space to second-order section conversion.
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6zp2ssPurpose Zero-pole-gain to state-space conversion.

Syntax [A,B,C,D] = zp2ss(Z,p,k)

Description zp2ss converts a zero-pole-gain representation of a given system to an 
equivalent state-space representation. It forms state-space models from the 
zeros, poles, and gains of systems in transfer function form.

[A,B,C,D] = zp2ss(Z,p,k) finds a single input, multiple output, state-space 
representation

given a system in factored transfer function form

Column vector p specifies the pole locations, and array Z the zero locations with 
as many columns as there are outputs. The gains for each numerator transfer 
function are in vector k. The A, B, C, and D matrices are returned in controller 
canonical form.

Inf values may be used as place holders in Z if some columns have fewer zeros 
than others.

Algorithm zp2ss, for single-input systems, groups complex pairs together into two-by-two 
blocks down the diagonal of the A matrix. This requires the zeros and poles to 
be real or come in complex conjugate pairs.

See Also
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ss2tf State-space to transfer function conversion.

ss2zp State-space to zero-pole-gain conversion.

tf2ss Transfer function to state-space conversion.

tf2zp Transfer function to zero-pole-gain conversion.

zp2tf Zero-pole-gain to transfer function conversion.
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6zp2tfPurpose Zero-pole-gain to transfer function conversion. 

Syntax [num,den] = zp2tf(Z,p,k) 

Description zp2tf forms transfer function polynomials from the zeros, poles, and gains of a 
system in factored form. 

[num,den] = zp2tf(z,p,k) finds a rational transfer function:

given a system in factored transfer function form:

Column vector p specifies the pole locations, and array Z the zero locations, 
with as many columns as there are outputs. The gains for each numerator 
transfer function are in vector k. The zeros and poles must be real or come in 
complex conjugate pairs. The polynomial coefficients are returned in vectors: 
the denominator coefficients in row vector den and the numerator coefficients 
in matrix num, with as many rows as there are columns of z.

Inf values can be used as place holders in Z if some columns have fewer zeros 
than others.

Algorithm The system is converted to transfer function form using poly with p and the 
columns of Z. 

See Also
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ss2tf State-space to transfer function conversion.

ss2zp State-space to zero-pole-gain conversion.

tf2ss Transfer function to state-space conversion.

tf2zp Transfer function to zero-pole-gain conversion.

zp2ss Zero-pole-gain to state-space conversion.
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6zplanePurpose Zero-pole plot.

Syntax zplane(z,p)
zplane(b,a)
[hz,hp,ht] = zplane(z,p)

Description This function displays the poles and zeros of discrete-time systems. 

zplane(z,p) plots the zeros specified in column vector z and the poles 
specified in column vector p in the current figure window. The symbol 'o' 
represents a zero and the symbol 'x' represents a pole. The plot includes the 
unit circle for reference. If z and p are arrays, zplane plots the poles and zeros 
in the columns of z and p, respectively, in different colors.

You can override the automatic scaling of zplane using

axis([xmin xmax ymin ymax])

or

set(gca,'ylim',[ymin ymax])

or

set(gca,'xlim',[xmin xmax])

after calling zplane. This is useful in the case where one or a few of the zeros 
or poles have such a large magnitude that the others are grouped around the 
origin and are thus hard to distinguish.

zplane(b,a) where b and a are row vectors, first uses roots to find the zeros 
and poles of the transfer function represented by numerator coefficients b and 
denominator coefficients a.

[hz,hp,ht] = zplane(z,p) returns vectors of handles to the zero lines, hz, 
and the pole lines, hp. ht is a vector of handles to the axes/unit circle line and 
to text objects, which are present when there are multiple zeros or poles. If 
there are no zeros or no poles, hz or hp is set to the empty matrix [].
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Examples Plot the poles and zeros of a 5th-order Butterworth lowpass digital filter with 
cutoff frequency of 0.2:

[z,p,k] = butter(5,0.2);
zplane(z,p)

To generate the same plot with a transfer function representation of the filter:

[b,a] = butter(5,0.2);   % transfer function
zplane(b,a)

See Also
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freqz Frequency response of digital filters.
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Index
A
abs 6-2, 6-11
algorithm, filtering in SPTool 5-19
aliased sinc function. See Dirichlet function
aliasing

and impulse invariance 2-41
preventing during resampling 4-21
reducing with analytic signal 4-37

all-pole filter. See IIR filter
all-zero filter. See FIR filter
am 4-29
AM. See amplitude modulation
amdsb–sc 4-29, 6-218
amdsb–tc 4-29, 6-218
amplitude demodulation

double side-band, suppressed carrier 6-98
double side-band, transmitted carrier 6-98
single side-band 6-98

amplitude modulation 4-29
double side-band, suppressed carrier 6-218
double side-band, transmitted carrier 6-218
single side-band 6-218

amssb 4-29, 6-218
analog filter

Bessel 6-16
Butterworth 6-30
Chebyshev type I 6-52
Chebyshev type II 6-57
converting to digital 2-41, 6-177
design 2-7

Bessel 2-11, 6-16
Butterworth 6-29
Chebyshev type I 6-51
Chebyshev type II 6-57
elliptic 6-110, 6-111
inverse 6-186

frequency response 1-26, 6-156
order estimation
Butterworth 6-35
Chebyshev type I 6-42
Chebyshev type II 6-47
elliptic 6-118

representational models 1-40
analog frequency xvii
analog prototype 2-38

Bessel filter 2-11, 6-15
Butterworth filter 2-8, 6-28
Chebyshev type I filter 2-9, 6-40
Chebyshev type II filter 2-10, 6-45
conversion to bandpass 6-202
conversion to bandstop 6-205
conversion to highpass 6-207
conversion to lowpass 6-209
elliptic filter 6-116
frequency response 2-12
plotting 2-12

analog prototype design
Bessel 2-38
bilinear transformation 2-42
Butterworth 2-38
Chebyshev 2-38
elliptic 2-38
filter discretization 2-41
frequency transformation 2-38
impulse invariance 2-41
See also IIR filter design

analog signal. See signal
analytic signal 2-26, 6-170

applications 4-37
properties 4-37

angle 6-2, 6-12
anti-symmetric filter 2-25
Apply button, Spectrum Viewer 5-88
I-1



Index

I-2
Apply Filter button 5-19
applying parameters with Apply button 5-91
AR model 4-11
ARMA filter 1-15

See also IIR filter
ARMA model 4-12, 4-14

Prony’s method 4-12
Steiglitz-McBride method 4-14

array
display in Signal Browser 5-44, 5-49
in SPTool 5-15

Array Signals button, Signal Browser 5-45, 5-49
ARX model 4-13
ASCII file, importing 1-13
attenuation, stopband 5-62
attributes, instantaneous 6-170
autocorrelation 4-11, 6-324

multiple channels 3-4
two-dimensional 6-329

autocovariance 6-330
multiple channels 3-4

autoregressive (AR) filter 1-15
See also IIR filter

autoregressive moving average (ARMA) filter 
1-15

See also IIR filter
auto-spectrum, in SPTool 5-15
averaging filter 1-14
axis labels, in Signal Browser 5-21, 5-24
axis parameters

in Filter Viewer 5-21
in Spectrum Viewer 5-21

axis scaling range
in Filter Viewer 5-27, 5-77
in Spectrum Viewer 5-25, 5-90, 5-93
axis scaling units
in Filter Viewer 5-26, 5-77
in Spectrum Viewer 5-25, 5-90, 5-93

B
band edges, prewarping 2-43
bandlimited interpolation 6-276
bandpass filter

analog prototype design 2-6
and impulse invariance 2-41
Bessel 6-16
Butterworth 6-29, 6-31
Chebyshev type I 6-51, 6-53
Chebyshev type II 6-56, 6-58
elliptic 6-110, 6-112
example, Chebyshev type I 2-39
FIR design, with window method 2-21, 6-139
transformation from lowpass to 6-202

bandstop filter
analog prototype design 2-6
Bessel 6-16
Butterworth 6-30, 6-31
Chebyshev type I 6-52, 6-53
Chebyshev type II 6-57, 6-58
elliptic 6-111, 6-112
FIR design, with window method 2-21, 6-138
transformation from lowpass to 6-205

bandwidth 2-40
bartlett 4-2, 6-7, 6-13

compared to triang 6-13
example 4-2

Bartlett window 4-2
coefficients 6-13

Bessel filter
analog 6-16
analog prototype 2-11, 2-38, 6-15



Index
bandpass configuration, analog 6-16
bandstop configuration, analog 6-16
characteristics 2-11
highpass configuration, analog 6-16
limitations 6-18
lowpass configuration, analog 6-16

besselap 2-5, 6-9, 6-15
example 2-11

besself 2-5, 2-6, 6-4, 6-16
beta parameter, of Kaiser window 5-65
bias

correlation 3-3, 4-12
power spectral density 3-11
spectral density 3-11
variance trade-off 3-4

bilinear 2-5, 2-41, 2-42, 6-10, 6-20
bilinear transformation 2-42, 6-20

defined 2-42
output representation 6-21
prewarping 2-43, 6-20

blackman 4-2, 6-7, 6-25
Blackman window 4-4, 6-25

defined 4-4
boxcar 4-2, 6-7, 6-27

example 4-2
boxcar window. See rectangular window
Burg method 3-5, 3-6, 3-20

compared to Welch’s method 3-22
defined 3-20

Burg method, in Spectrum Viewer 5-95
buttap 2-5, 6-9, 6-28

example 2-8
butter 2-5, 2-6, 6-4, 6-29

accessing from Filter Designer 5-55
Butterworth filter

analog 6-30
analog prototype 2-8, 2-38, 6-28

bandpass configuration
analog 6-31
digital 6-29

bandstop configuration
analog 6-31
digital 6-30

characteristics 2-8
design 6-29
digital 6-29
generalized 2-14
highpass configuration

analog 6-31
digital 6-30

limitations 6-33
lowpass configuration

analog 6-30
digital 6-29

order estimation 2-7, 6-34
buttord 2-5, 6-5, 6-34

C
canonical forms 1-17, 6-308
carrier frequency 4-28, 6-218, 6-322
carrier signal 4-28, 6-98
cascade, digital filter 1-37
Cauer filter. See elliptic filter
cceps 4-23, 6-8, 6-38

example 4-23
center frequency 2-40
central features 1-2
cepstrum

applications 4-23
complex 4-23

inverse 4-23, 4-25
overview 4-23
real 4-23
I-3



Index

I-4
cepstrum (cont.)
See also real cepstrum, complex cepstrum

cepstrum analysis 4-23
cheb1ap 2-5, 6-9, 6-40

example 2-9, 2-39
cheb1ord 2-5, 6-5, 6-41
cheb2ap 2-5, 6-9, 6-45

example 2-10
cheb2ord 2-5, 6-5, 6-46
chebwin 4-2, 6-7, 6-50
cheby1 2-5, 2-6, 6-4, 6-51

accessing from Filter Designer 5-55
example 2-44

cheby2 2-5, 2-6, 6-4, 6-56
accessing from Filter Designer 5-55

Chebyshev error minimization 2-22, 6-255
Chebyshev type I filter

analog 6-52
analog prototype 2-9, 2-38, 6-40
bandpass configuration

analog 6-53
digital 6-51

bandstop configuration
analog 6-53
digital 6-52

characteristics 2-9
design 6-51
digital 6-51
highpass configuration

analog 6-53
digital 6-52

lowpass configuration
analog 6-52
digital 6-51

order estimation 2-7, 6-41
Chebyshev type II filter
analog 6-57
analog prototype 2-38, 6-45
bandpass configuration

analog 6-58
digital 6-56

bandstop configuration
analog 6-58
digital 6-57

characteristics 2-10
design 6-56
digital 6-56
highpass configuration

analog 6-58
digital 6-57

limitations 6-55
lowpass configuration

analog 6-57
digital 6-56

order estimation 2-7, 6-46
Chebyshev window 4-9, 6-50

frequency response 4-9
chirp 1-9, 6-2, 6-61
chirp signal
chirp z-transform (CZT) 4-33, 6-89

compared to discrete Fourier transform 4-33
execution time 4-34
for narrowband frequency analysis 6-89

classical IIR filter design 2-8
click-and-drag panning, in Signal Browser 5-46
coefficients

correlation 6-74
filter 1-15
linear prediction 6-211
reflection 1-37, 6-234, 6-252

cohere 3-6, 3-16, 6-6, 6-65



Index
coherence 3-15, 6-65
defined 3-15

coherence function 3-15
Color button 5-34
color order

in Signal Browser 5-23
in Spectrum Viewer 5-23

Color Order text box 5-23
color, customizing in SPTool 5-21
column index vector, entering in Signal Browser 

5-44
column, array 5-44
communications 4-10
communications simulation 4-28, 6-98, 6-218

See also modulation, demodulation, voltage 
controlled oscillation

Compact Disc standard 4-20
complex cepstrum, defined 4-23
complex conjugate 6-76
Complex Display mode 5-45
complex envelope 4-37
complex numbers, grouping by conjugate 6-76
complex signals, in Signal Browser 5-45
computation parameters, in Spectrum Viewer 

5-93, 5-94
Conf. Int. check box 5-98
confidence interval

for cross spectral density 3-14
for power spectral density 3-14, 5-98
setting in Spectrum Viewer 5-98

conservation of total power, using pmtm 3-19
context sensitive help in SPTool 5-8
continuous signal. See signal
continuous-time filter. See analog filter
control systems 1-35
Control Systems Toolbox 1-35, 6-181
conv 1-14, 1-20, 6-2, 6-69

conv2 1-14, 6-2, 6-70
convmtx 1-39, 1-42, 6-3, 6-72
convolution

and cross-correlation 3-3
and filtering 1-14, 6-133
convolution matrix 1-39, 6-72
defined 6-69
example 1-14
two-dimensional 6-70

obtaining subsection 6-70
convolution matrix 1-42, 6-72

defined 1-39
example 6-72

corrcoef 6-6, 6-74
correlation 3-2

coefficient matrix 6-74
See also autocorrelation, cross-correlation

cosine window 4-4
cov 6-6, 6-75
covariance 3-2

matrix 6-75
See also autocovariance, cross-covariance

cplxpair 6-8, 6-76
Create button, in Spectra panel 5-19, 5-88
cremez 2-17, 6-5, 6-77
cross spectral density 3-13, 6-84

confidence interval 3-14
defined 3-5

cross-correlation 6-324
biased 3-3
multiple channels 3-4
normalization 3-4
two-dimensional 6-329
unbiased 3-3

cross-covariance 6-330
multiple channels 3-4

csd 3-6, 3-13, 6-6, 6-84
I-5



Index

I-6
CSD. See cross spectral density
cutoff frequency 2-38

defined 6-16
for Kaiser window filter 5-65

czt 4-34, 6-6, 6-89
CZT. See chirp z-transform

D
data

duplicating in SPTool 5-16
editing in SPTool 5-14, 5-16
entering 1-13
exporting from SPTool 5-7
importing 1-13
importing into SPTool 5-5, 5-7, 5-8
measuring in SPTool 5-30
multichannel 1-4, 1-7
viewing in SPTool 5-30

data compression 4-10
data matrix 1-4, 1-7
data vector 1-4
dct 4-35, 6-6, 6-92

example 4-36
decimate 6-8, 6-94
decimation 6-94

FIR filter for 6-184
deconv 4-32, 6-8, 6-97

example 4-32
deconvolution 4-32, 6-97
default plot, in Spectrum Viewer 5-93
delay

adding to signal 2-25
group 1-28
noninteger 2-26
phase 1-28
demod 4-28, 4-29, 6-8, 6-98
example 4-30

demodulation 4-29, 6-98
example 4-30
methods 4-29, 6-98

design, generalized filter 2-5
designed filter, in SPTool 5-15
detrend 6-8, 6-101
DFT. See discrete Fourier transform
dftmtx 6-6, 6-102
difference equation, relation to transfer function 

1-32
differentiator 2-26, 6-151, 6-257
Digital Audio Tape standard 4-20
digital filter

anti-causal 1-20
as convolution matrix 1-40
Butterworth 6-29
cascade 1-37
Chebyshev type I 6-51
Chebyshev type II 6-56
coefficients 1-15
design 2-2
elliptic 6-110
FIR 2-16

compared to IIR 2-16
fixed-point implementation 1-37
frequency response 1-24
group delay 1-28, 6-165
identification from frequency data 6-190
IIR 2-4

compared to FIR 2-4
implementation 1-14, 6-127, 6-130

FFT-based (FIR) 6-127
overlap-add method 1-22
using convolution 1-14
using filter function 1-16



Index
impulse response 1-14, 1-23, 6-179
initial conditions 1-17
linear system models 1-32
names 1-15
order 1-15

in state-space representation 1-34
order estimation

Butterworth 6-34
Chebyshev type I 6-41
Chebyshev type II 6-46
elliptic 6-117
equiripple FIR 6-263

phase delay 1-28, 6-165
poles 1-30, 1-33
representational models 1-32
representing in MATLAB 1-32
second-order sections 1-37
specifications 2-7
startup transients 1-21, 1-22
structure

lattice 1-37
transposed direct form II 1-17

time-domain representation 1-16
transfer function representation 1-15
two-dimensional 6-133
zero-phase 1-20, 6-134
zeros 1-30, 1-33
zeros and poles 1-33
See also FIR filter, IIR filter

digital filter design
FIR 2-16
IIR 2-4

digital frequency xvii
direct design 2-13

described 2-13
summary 2-5

diric 6-2, 6-103

Dirichlet function 1-12, 6-103
defined 1-12
example 1-12

discrete cosine transform (DCT) 6-92
applications 4-35
energy compaction property 4-36
example 4-36
inverse 4-35, 6-173
reconstructing signal from few coefficients 

4-36
discrete Fourier transform (DFT) 1-2, 1-43

algorithms 1-45
and IIR filter implementation 1-22
and spectral analysis 3-6
applications 6-122
dependence on signal length 1-45
example 1-44
execution time, using chirp z-transform 4-34
inverse 1-43, 6-175

matrix 6-102
two-dimensional 1-45, 6-176

matrix 6-102
two-dimensional 1-45, 6-126
See also fast Fourier transform (FFT), fft

discrete prolate spheroidal sequences (DPSSs) 
3-19

discrete-time Fourier transform 3-5
discretization 2-41, 6-177

bilinear transformation 2-42
prewarping 2-43

impulse invariance 2-41
disk, loading variables from 5-9
dpss 6-8, 6-104
dpss.mat 3-19
dpssclear 3-19, 6-8, 6-106
dpssdir 3-19, 6-8, 6-107
dpssload 3-19, 6-8, 6-108
I-7
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I-8
DPSSs. See discrete prolate spheroidal 
sequences

dpsssave 3-19, 6-8, 6-109
duty cycle, specifying 1-8

E
echo detection 4-23
edge effects 1-22
edge frequencies, setting in Filter Designer 5-62
Edit Design button 5-18, 5-56
eig, in pmusic function 3-24
eigenanalysis

defined 3-23
frequency estimator functions 3-23

eigenvector method 3-5, 3-22
See also multiple signal classification 

method
ellip 2-5, 2-6, 6-4, 6-110

accessing from Filter Designer 5-55
ellipap 2-5, 6-9, 6-116

example 2-10
ellipord 2-5, 6-5, 6-117
elliptic filter

analog 6-111
analog prototype 2-38, 6-116
bandpass configuration

analog 6-112
digital 6-110

bandstop configuration
analog 6-112
digital 6-111

characteristics 2-10
design 6-110
digital 6-110
highpass configuration
analog 6-112
digital 6-111

limitations 6-114
lowpass configuration

analog 6-111
digital 6-110

order estimation 2-7, 6-117
energy compaction 4-36
equiripple characteristics

Chebyshev type I filter (passband) 2-9
Chebyshev type II filter (stopband) 2-10
Chebyshev window 4-9
elliptic filter 2-10, 6-110, 6-116
from Parks-McClellan design 6-255

equiripple filter 2-22
error minimization

between desired and actual response 2-22
for equiripple filter 5-65
for least squares filter 5-65
integral of square 2-22
minimax 2-22
weighting in frequency bands 2-24

estimation
cross spectrum 3-13
power spectrum 3-6
transfer function 3-14
See also parametric modeling

estimation methods
in Spectrum Viewer 5-93, 5-94
nonparametric

FFT method 5-95
multiple signal classification method (MU-

SIC) 3-5, 5-96
multitaper method (MTM) 3-5, 5-95
Welch’s method 3-5, 5-97



Index
parametric 3-5
Burg method 5-95
Yule AR method 5-97

Export menu item 5-7
exporting data from MATLAB 1-13
extensions to SPTool 5-29

F
Factory Settings button, in Preferences dialog box 

5-29
fast Fourier transform (FFT) 1-22, 1-43

and frequency response 1-24
fft function 1-22
prime factor algorithm 1-45, 6-124
radix-2 algorithm 1-45, 6-124
role in signal processing 1-43
two-dimensional 6-126

FFT 4-26
fft 1-2, 1-22, 1-43, 6-6, 6-122

complex inputs 1-45
example 1-44
execution time 1-45, 6-125
prime factor algorithm 1-45, 6-124
radix-2 algorithm 1-45, 6-124
real inputs 1-45
rearranging output 1-45, 6-129
specifying number of points 1-44

FFT length
in Filter Designer 5-21, 5-28
in Filter Viewer 5-26

FFT Length edit box, in Preferences dialog box 
5-26, 5-28

FFT method, in Spectrum Viewer 5-95
FFT. See fast Fourier transform
fft2 1-45, 6-6, 6-126

rearranging output 1-45

FFT-based filtering 1-22
fftfilt 1-19, 6-2, 6-127

compared to filter 6-127
fftshift 1-45, 6-6, 6-129
File Contents list 5-9
filter

analog prototype 2-8, 2-11, 6-15, 6-28, 6-40, 
6-45, 6-116

analyzing in Filter Viewer 5-18
applying to a signal 5-19
Butterworth 2-7, 6-29

generalized 2-14
Chebyshev 2-7
Chebyshev type I 6-51
Chebyshev type II 6-56
coefficients 1-15, 2-17
design

FIR 6-255
generalized 2-5
IIR 2-5
inverse 6-186, 6-190

discretization 2-41
editing in SPTool 5-18
elliptic 2-7, 6-110
equiripple 2-22
group delay 5-18
identification from frequency data 6-186
implementation 1-22, 6-127, 6-130
importing into SPTool 5-8, 5-10, 5-12
impulse response 5-18
linear time-invariant digital 1-2
magnitude response 5-18
measurements 5-37
median 4-27, 6-217
minimax 2-22
minimum phase 6-236
multiband FIR 2-22
I-9
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I-10
filter (cont.)
names 1-15
naming in SPTool 5-17
order 1-15, 2-7, 6-34, 6-41, 6-46, 6-117
order selection 2-7
phase response 5-18
principal supported 1-2
single band FIR 2-20
specifications 2-7
step response 5-18
transposed direct form II structure 1-17
two-dimensional 6-133
types 2-17
viewing in Filter Viewer 5-17
zeros and poles 5-18
See also FIR filter, IIR filter, digital filter, an-

alog filter
filter 1-2, 1-15, 1-20, 6-2, 6-130

compared to fftfilt 6-127
compared to filtfilt 1-21
final condition parameters 1-17
implementation 1-17
initial condition parameters 1-17
initial conditions 6-135

filter design
in Filter Designer 5-55, 5-63, 5-66
standard band configurations 5-55
using specification lines 5-62

Filter Designer 5-2, 5-18, 5-55, 5-56, 6-290
activating 5-18, 5-56
changing plot properties 5-28
classical IIR filter design 5-66
closing 5-56
customizing 5-21
magnitude plot 5-62
magnitude plot as design tool 5-68
magnitude response plot 5-59
measuring response characteristics 5-62
saving data to workspace 5-53, 5-69, 5-98
setting edge frequencies 5-62
setting passband ripple 5-62
setting stopband attenuation 5-62
single band FIR filter design 5-63
window 5-56

filter parameters, in Filter Viewer 5-21
filter response, peaks and valleys 5-36
filter type

design 5-15, 5-18
imported 5-15, 5-18

Filter Viewer 5-2, 5-17, 5-74, 6-291
activating 5-17, 5-74
customizing 5-21
default plot 5-75
plots 5-76
preferences 5-76
settings 5-76
subplots 5-76
viewing frequency response 5-73
viewing group delay 5-84
viewing impulse response 5-85
viewing magnitude response 5-80
viewing phase response 5-82
viewing step response 5-87
viewing zero-pole plot 5-85
window 5-75

filter2 6-3, 6-133
filtering

and convolution 1-14
anti-causal 1-20
frequency domain 1-22
initial conditions 1-17

generating 1-18
zero-phase 1-20

filtering algorithm 5-19



Index
filtfilt 1-19, 1-20, 2-4, 6-3, 6-134
compared to filter 1-21
example 1-20
initial conditions 1-21

filtic 1-18, 6-3, 6-135
FIR filter

arbitrary frequency response 6-141
compared to IIR 2-16
design 2-16

decimation 6-184
interpolation 6-184
least squares method 6-150
linear phase 6-150
multiband frequency response 6-141
Parks-McClellan method 6-255
window method 6-137

differentiator 2-26, 6-151, 6-257
Hilbert transformer 2-25, 6-151, 6-257
implementation 1-17, 6-130

FFT-based 1-22, 6-127
overlap-add method 1-22, 6-127

linear phase 2-17, 6-255
order estimation, remez function 6-263
types 6-153, 6-260

FIR filter design 2-17
anti-symmetric 2-25
arbitrary responses 2-31

complex filters 2-17, 6-77
nonlinear phase 2-17, 6-77
reduced delay 2-34

constrained least squares 2-17, 2-27
linear phase 2-28
multiband 2-28, 2-29
weighted 2-30

equiripple 2-17, 2-22, 2-23, 5-63, 5-65
example 5-63, 5-100
in Filter Designer 5-55, 5-63

Kaiser window 5-63, 5-65
least squares 2-17, 2-22, 2-23, 5-63, 5-65
least squares compared to equiripple 2-23
linear phase filters 2-17, 2-22
multiband 2-17, 2-21, 2-22
order selection 5-65
parameters in Filter Designer 5-65
Parks-McClellan method 2-22
raised cosine method 2-17
role of Kaiser window 4-7
standard band 2-20
windowing method 2-17, 2-18

FIR filtering, in frequency domain 1-19
FIR lattice filter, implementation 1-38
fir1 2-17, 2-20, 6-5, 6-137

accessing from Filter Designer 5-63, 5-65
fir2 2-17, 2-20, 6-5, 6-141

example 2-21
fircls 2-17, 6-5, 6-144
fircls1 2-17, 6-5, 6-147
firls 2-17, 2-22, 6-5, 6-150

accessing from Filter Designer 5-55, 5-63, 5-65
compared to remez 2-23
filter characteristics 6-153
for differentiator design 2-26
weight vector 2-24

firrcos 6-155
firrcos 2-17, 6-5, 6-155
fixed-point implementation, digital filter 1-37
fm 4-29
FM. See frequency modulation
fopen 1-13
Fourier transform, eigenvector equivalent 3-24
Fourier transform, time dependent. See time-de-

pendent Fourier transform
Fourier transform. See discrete Fourier trans-

form, fast Fourier transform
I-11
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I-12
fread 1-13
freqs 1-26, 6-3, 6-156
freqspace 6-159
frequency 6-256

analog xvii
angular 2-2
carrier 4-28, 6-218, 6-322
center 2-40
cutoff 2-38
digital xvii
normalization 2-2
Nyquist xvii, 2-2
prewarping 6-20
transformation 6-202, 6-205, 6-207, 6-209
vector 2-24, 6-141, 6-144, 6-333

frequency analysis
in Filter Viewer 5-74
time-dependent 6-284

Frequency Axis Range pop-up menu, in Prefer-
ences dialog box 5-25, 5-27

Frequency Axis Scaling pop-up menu, in Prefer-
ences dialog box 5-25, 5-26

frequency axis scaling, in Spectrum Viewer 5-90
frequency demodulation 6-99
frequency domain

duality with time domain 1-22
FIR filtering 1-19
for filter implementation 1-22

frequency domain based modeling. See paramet-
ric modeling

frequency estimator functions, in eigenanalysis 
3-23

frequency estimator techniques
eigenvector (EV) method 3-22
multiple signal classification (MUSIC) method 

3-22
frequency modulation 6-219
frequency points
freqz 1-24, 1-26
range 1-26
spacing 1-26

Frequency Range pop-up menu, Spectrum Viewer 
5-90

frequency response 1-24
arbitrary 2-13, 6-141
example 1-25
in Filter Viewer 5-73, 5-74, 5-80
inverse 6-186
Kaiser window 4-6
linear phase 2-17
magnitude 1-26
minimized error between desired and actual 

2-22
monotonic 2-9
multiband 2-13
of Bessel prototype 2-11
of Butterworth prototype 2-8
of Chebyshev type I prototype 2-9
of Chebyshev type II prototype 2-10
of Chebyshev window 4-9
of elliptic prototype 2-10
phase 1-26

unwrapping 1-27
plotting 1-25
points at which evaluated 1-24
spacing 6-159
specifying sampling frequency 1-24

Frequency Scale pop-up menu, Spectrum Viewer 
5-90

frequency transformation 2-38
example 2-40
lowpass to bandpass 6-202
lowpass to bandstop 6-205
lowpass to highpass 6-207



Index
lowpass to lowpass 6-209
frequency vector 6-256
freqz 1-24, 6-3, 6-160

frequency points 1-24
sampling frequency 1-24
spacing 6-159

From Disk radio button, in Import dialog box 5-9
From Workspace radio button, in Import dialog 

box 5-9
fscanf 1-13
Full View button 5-31

G
gauspuls 1-9, 1-10, 6-2, 6-163
Gauss-Newton method 6-188, 6-192
generalized Butterworth filter 2-14
generalized cosine window 4-4
Gibbs effect 2-19

reduced by window 4-2
graphical user interface (GUI) xii, 1-3
grid lines, in Filter Designer 5-21, 5-28
group delay 1-28, 5-18, 6-165

defined 1-28
example 1-29
of linear response filter 2-18
passband 2-11
viewing in Filter Viewer 5-84

Group Delay check box, Filter Viewer 5-77
group delay plot 5-77, 5-84
grpdelay 1-28, 6-3, 6-165
GUI. See graphical user interface
GUI-based tools. See interactive tools

H
hamming 4-2, 6-7, 6-168
Hamming window 2-20, 4-4, 6-168
hanning 4-2, 6-7, 6-169
Hanning window 4-4, 6-169
highpass filter

analog prototype design 2-6
Bessel 6-16
Butterworth 6-30, 6-31
Chebyshev type I 6-52, 6-53
Chebyshev type II 6-57, 6-58
elliptic 6-111, 6-112
FIR design

with window method 2-21, 6-139
transformation from lowpass to 6-207

hilbert 2-26, 4-37, 6-6, 6-170
example 4-38

Hilbert transform 4-33, 4-37, 6-170
and analytic signal 2-26
and instantaneous attributes 4-38
example 4-38

Hilbert transformer 6-151, 6-257
homomorphic systems 4-23
Horizontal button, for rulers 5-35, 5-37, 5-38

I
icceps 4-23, 4-25, 6-8, 6-172

example 4-25
idct 4-35, 6-6, 6-173
ideal lowpass filter 2-18
ifft 1-43, 6-6, 6-175

specifying number of points 1-45
ifft2 1-45, 6-6, 6-176
IIR filter

arbitrary frequency response 2-13
Bessel 2-11
I-13
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I-14
IIR filter (cont.)
Butterworth 2-8
Chebyshev type I 2-9
Chebyshev type II 2-10
compared to FIR 2-4
design 2-4

direct 2-13
Levinson-Durbin recursion 6-201, 6-211
multiband 2-13
Prony’s method 6-237
Steiglitz-McBride iteration 6-301
Yule-Walker 6-333

elliptic 2-10
implementation 6-130

frequency domain 1-22
zero-phase 1-20

IIR filter design 2-4, 2-5
analog prototype 2-5
Butterworth 2-7, 2-8, 5-66, 5-67
Chebyshev 2-7, 2-9, 2-10, 5-66, 5-67
classical (analog prototype) 2-5, 2-8

comparison of filter types 2-8
general steps 2-37
illustration 2-37
in Filter Designer 5-66
order estimation 2-7
plotting prototypes 2-12
single step 2-6
single step order estimation 2-7
system model 2-7

direct methods 2-13
Yule-Walker 2-13

elliptic 2-7, 2-10, 5-66, 5-67
example 5-66, 5-68
generalized Butterworth 2-14
in Filter Designer 5-55, 5-66
maximally flat 2-14
parameters in Filter Designer 5-67
to specifications 2-7
See also direct design, parametric modeling

IIR lattice filter, implementation 1-38
image processing 6-70

with fft2 and ifft2 1-45
impinvar 2-5, 2-41, 6-10, 6-177
Import As pop-up menu, in Import dialog box 5-10
Import menu item 5-5, 5-7
imported filter, in SPTool 5-15
impulse invariance 2-41, 6-177

limitations 2-41
impulse response 1-23, 5-18, 6-179

and impulse invariance 2-41
computing with filter 1-23
computing with impz 1-23
defined 1-23
example 1-23
of ideal lowpass filter 2-19
viewing in Filter Viewer 5-85

Impulse Response check box, Filter Viewer 5-77
impulse response plot 5-77, 5-85
impz 6-3, 6-179

example 1-23
indexing, of vectors 1-15
Inherit from pop-up menu, Spectrum Viewer 5-91
inheriting parameters 5-91
initial conditions 1-17, 1-21, 6-135

generating 1-18
Initial Type pop-up menu, in Preferences dialog box 

5-22
instantaneous attributes 4-38, 6-170
interactive tools 5-2

extended example 5-100
Filter Designer 5-2, 5-55, 6-290
Filter Viewer 5-2, 5-74, 6-291
Signal Browser 5-2, 5-42, 6-289



Index
Spectrum Viewer 5-3, 5-88, 6-292
SPTool 5-2, 6-289

interp 6-9, 6-182
interpolation 6-182

FIR filter design 6-184
intfilt 6-5, 6-184
inverse complex cepstrum 4-25
inverse discrete cosine transform 6-173

accuracy of signal reconstruction 4-37
inverse discrete Fourier transform 1-43, 6-175

ifft 1-43
matrix 6-102
two-dimensional 1-45, 6-176

inverse filter design 6-190, 6-237
analog 6-186
digital 6-190

inverse Fourier transform, continuous. See sinc 
function

invfreqs 2-5, 4-10, 4-16, 6-8, 6-186
invfreqz 2-5, 4-10, 4-16, 6-8, 6-190

K
kaiser 4-2, 6-7, 6-193

accessing from Filter Designer 5-55, 5-63
example 4-5

Kaiser window 4-4, 6-193
and FIR filter design 4-7, 5-63
beta parameter 4-4, 6-193
example 4-5
frequency response 4-6

kaiserord 2-17, 6-5, 6-194
accessing from Filter Designer 5-65

L
ladder coefficients 1-38
Lagrange interpolation filter 6-184
Laplace transform 1-41

equivalent to state-space representation 1-41
latc2tf 1-39, 1-42, 6-3, 6-199
latcfilt 1-39, 6-3, 6-200
lattice coefficients 1-38
lattice filter 1-42

implementation 1-38
implementation with latcfilt 1-39

lattice structure 1-37
lattice/ladder filter

implementation 1-38
implementation with latcfilt 1-39

least squares method, FIR filter design 6-150
filter characteristics 6-153

levinson 4-10, 6-8, 6-201
and parametric modeling 4-12

Levinson-Durbin recursion 4-12, 6-201
line color

in Filter Viewer 5-34
in Signal Browser 5-34
in Spectrum Viewer 5-34

line selection
in Filter Viewer 5-33, 5-34
in Signal Browser 5-33, 5-34
in Spectrum Viewer 5-33, 5-34

line style
customizing in SPTool 5-21
in Filter Viewer 5-23, 5-34
in Signal Browser 5-23, 5-34
in Spectrum Viewer 5-23, 5-34

Line Style Order edit box, in Preferences dialog 
box 5-23
I-15
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I-16
linear phase 2-16, 2-17, 6-150
filter design 6-255
related characteristics 2-17

linear prediction coefficients 6-211
linear prediction modeling 4-11
linear predictive coding
linear swept-frequency cosine. See chirp
linear system models 1-32
linear system transformations 1-41

conversion chart 1-41
linear time-invariant differential equations, rep-

resented in state-space form 1-40
linear trend, removing from sequence 6-101
load 1-13
lowpass filter

analog prototype design 2-6
and impulse invariance 2-41
Bessel 6-16
Butterworth 6-29, 6-30
Chebyshev type I 6-51, 6-52
Chebyshev type II 6-56, 6-57
elliptic 6-110, 6-111
FIR design, with window method 2-21
for decimation 6-94
for interpolation 6-182
ideal impulse response 2-18
translation of cutoff frequency 6-209

lp2bp 2-5, 2-39, 6-10, 6-202
example 2-40

lp2bs 2-5, 2-39, 6-10, 6-205
lp2hp 2-5, 2-39, 6-10, 6-207
lp2lp 2-5, 2-39, 6-10, 6-209
lpc 2-5, 4-10, 6-8, 6-211

See also linear predictive coding, Prony’s 
method

LPC. See linear prediction coefficients
M
magnitude

of Fourier transform of sequence 1-44
of frequency response 1-26

viewing in Filter Viewer 5-80
of transfer function estimate 3-15
vector 2-24, 6-141, 6-144, 6-333

Magnitude Axis Scaling pop-up menu, in Preferenc-
es dialog box 5-25, 5-26

Magnitude check box, Filter Viewer 5-77
magnitude plot, in Filter Designer 5-62, 5-68
magnitude response 5-18
magnitude response plot 5-68, 5-77, 5-80

in Filter Designer 5-59
Magnitude Scale pop-up menu, Spectrum Viewer 

5-90
magnitude scale, in Spectrum Viewer 5-90
manufacturing 4-10
Marker Size edit box, in Preferences dialog box 

5-22
match frequency (for prewarping) 6-20
MAT-file

dpss.mat 3-19
importing 1-13
importing into SPTool 5-5, 5-7
loading into SPTool 5-9

MAT-file format, converting to 1-13
matrices

convolution 1-39, 6-72
correlation coefficient 6-74
covariance 6-75
data 1-4, 1-7
discrete Fourier transform 6-102
for second-order sections form 1-37
inverse discrete Fourier transform 6-102

matrix form. See state-space form
maxflat 2-5, 2-14, 6-4, 6-215



Index
maxima, local 5-36
maximally flat 2-14
measurement lines 5-62
measurements

in Filter Viewer 5-37
in Signal Browser 5-37
in Spectrum Viewer 5-37, 5-92
saving in Filter Viewer 5-36
saving in Signal Browser 5-36
saving in Spectrum Viewer 5-36

medfilt1 4-27, 6-9, 6-217
median filter 4-27, 6-217
message signal 4-28, 6-218
Method pop-up menu, Spectrum Viewer 5-94
MEX-file 1-13
M-files 1-3

creating xii, 1-3
modifying xii
viewing xii

minima, local 5-36
minimax method, FIR filter design 2-22

See also Parks-McClellan method
minimum phase filter 6-236
models, system representation 1-32
modified periodogram 3-9
modulate 4-28, 6-9, 6-218

example 4-30
method flags 4-29

modulation 6-218
amplitude
defined 4-28
example 4-30
frequency
methods 4-29, 6-218
phase 4-29
pulse time 4-29
pulse width 4-29

quadrature amplitude 4-29
mouse zoom 5-31

in Filter Designer 5-21
in Filter Viewer 5-21, 5-79
in Signal Browser 5-21
in Spectrum Viewer 5-21
turning off 5-32

Mouse Zoom button 5-31
moving average (MA) filter 1-15

See also FIR filter
MTM. See multitaper method
multiband filter

FIR 2-21
FIR, with transition bands 2-22
IIR 2-13

multichannel data 1-4, 1-7
multichannel signal 3-4
multiple signal classification method (MUSIC) 

3-5, 3-6, 3-22
defined 3-22
in Spectrum Viewer 5-96

multirate filter bank, implementation 1-19
multirate filtering 1-19
multitaper method (MTM) 3-5, 3-6, 3-16

compared to Welch’s method 3-19
defined 3-16
example 3-17
in Spectrum Viewer 5-95

MUSIC. See multiple signal classification 
method

N
New Design button 5-7, 5-18, 5-56
noninteger delay 2-26
nonrecursive filter. See FIR filter
I-17
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I-18
normalization 3-3
correlation 3-4, 6-325
power spectral density 3-11

Nyquist frequency xvii, 2-2

O
objects, editing in SPTool 5-16
one-time mouse zooming 5-31
Open Session menu item 5-7
order estimation 2-7, 6-263

Butterworth 6-34
Chebyshev type I 6-41
Chebyshev type II 6-46
elliptic 6-117
in Filter Designer 5-65, 5-68

order selection 2-7
in Filter Designer 5-65, 5-68

order, of filter 1-15, 2-7
orthogonal windows, in PSD estimates 3-16
oscillator, voltage controlled 6-322
overlap-add method, FIR filter implementation 

1-22, 6-127

P
panner 5-51

in Signal Browser 5-21, 5-24, 5-46
Panner check box, in Preferences dialog box 

5-24
parameters

in Spectrum Viewer 5-90, 5-91, 5-93
inheriting in Spectrum Viewer 5-91

parametric modeling 4-10, 6-190
applications 4-10
frequency domain based 4-16
summary 2-5
techniques 4-10
time domain based

linear predictive coding 4-11, 4-12
Steiglitz-McBride method 4-14

time-domain based 4-11
Parks-McClellan method, FIR filter design 2-22, 

6-255
Parseval’s relation 3-13
partial fraction 1-42
partial fraction expansion 1-40

defined 1-35
determining with residue 1-41
example 1-35

partial fraction form 1-35, 6-271
passband

equiripple 2-9, 2-10
group delay 2-11

passband ripple, setting in Filter Designer 5-62
passband zoom 5-32
Passband Zoom button 5-32
pburg 3-6, 3-21, 4-10, 6-6, 6-221
Peaks button, Signal Browser 5-36
periodic sinc function 6-103

See also Dirichlet function
periodogram 3-6

modified 3-9
persistent mouse zooming 5-31
phase

computing with angle 6-12
of Fourier transform of sequence 1-44
of frequency response 1-26

viewing in Filter Viewer 5-82
of transfer function estimate 3-14
unwrapping 1-27, 6-317

Phase check box, Filter Viewer 5-77
phase delay 1-28, 6-165

defined 1-28



Index
example 1-29
of linear response filter 2-18

phase demodulation 6-99
phase distortion

eliminating
during filtering 1-19
example 1-20
using filtfilt 1-20

in FIR filters 1-20
nonlinear

in IIR filters 1-20
phase modification

data dependent, using cceps 4-25
phase modulation 4-29, 6-219
phase response 5-18
phase response plot 5-77, 5-82
Phase Units pop-up menu, in Preferences dialog 

box 5-26
phase units, in Filter Viewer 5-26
Play menu item, Signal Browser 5-43
playing a signal 5-43
plot

analog prototypes 2-12
coherence function 3-16
complex cepstrum 4-24
DFT 1-44
frequency response 1-25

magnitude 1-26
phase 1-26

group delay 1-29, 5-77, 5-84
impulse response 5-77, 5-85
in Filter Viewer 5-74, 5-76, 5-78, 5-80
magnitude response 5-68, 5-77, 5-80
modified periodogram 3-9
multitaper estimate 3-17, 3-18
periodogram 3-7
phase delay 1-29

phase response 5-77, 5-82
power spectral density 3-10
spectral density 5-92
step response 5-77, 5-87
strip plot 6-304
tiling in Filter Viewer 5-79
transfer function 3-15
zero-pole 1-30, 5-77, 5-85, 6-341

plug-ins 5-21, 5-29
pm 4-29
p-model. See parametric modeling
pmtm 3-6, 6-6, 6-224

example 3-17
pmusic 3-6, 3-22, 6-6, 6-228
pole-zero filter. See IIR filter
poly 1-33, 1-42
poly2rc 6-3, 6-234
polynomial

division 4-32, 6-97
multiplication 6-69
roots 1-33
stabilization 6-236

polyphase filtering techniques 1-19
polystab 6-9, 6-236
power spectral density 6-239

approximating energy in frequency band 3-13
bias 3-11
computation parameters 5-93, 5-94
confidence interval 3-14
default plot 5-93
defined 3-5
estimation by Burg method 3-6, 3-20, 5-95
estimation by FFT method 5-95
estimation by multitaper method 3-6, 3-16, 

5-95
estimation by MUSIC method 3-6, 3-22, 5-96
estimation by Welch’s method 3-6, 3-10, 5-97
I-19
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I-20
power spectral density (cont.)
estimation by Yule AR method 5-97
estimation by Yule-Walker AR method 3-6, 

3-19
estimation methods 5-93, 5-94
in SPTool 5-13
normalization 3-11
viewing in Spectrum Viewer 5-88, 5-93, 5-94

preferences
rulers 5-22
saving in Signal Browser 5-43

preferences file
in SPTool 5-30
sigprefs.mat 5-30

Preferences menu item 5-7, 5-21, 5-29
prewarping 6-20
prolate-spheroidal window 4-4
prony 2-5, 4-10, 4-12, 6-8, 6-237
Prony’s method 4-12, 6-237

modeling 4-12
prototype

Bessel filter 2-11, 6-15
Butterworth filter 2-8, 6-28
Chebyshev type I filter 6-40
Chebyshev type II filter 6-45
elliptic filter 6-116

psd 3-6, 3-10, 6-7, 6-239
example 3-11

PSD. See power spectral density
ptm 4-29
pulse time demodulation 6-99
pulse time modulation 4-29, 6-219
pulse train generator 6-244
pulse trains

generating 1-10
pulstran 1-10

pulse width demodulation 6-99
pulse width modulation 4-29, 6-219
pulstran 1-10, 6-2, 6-61, 6-104, 6-106, 6-107, 6-108, 

6-109, 6-244, 6-254, 6-306, 6-316
pwm 4-29
pyulear 3-6, 3-20, 4-11, 6-7, 6-248

example 3-20

Q
qam 4-29
quadrature amplitude demodulation 6-99
quadrature amplitude modulation 4-29, 6-219
quantization noise 6-337

R
radar applications 4-26
radix-2 algorithm 1-45
raised cosine filter design 6-155
randn xiv
random number, generation xiv
Range pop-up menu, Filter Viewer 5-77
rc2poly 6-3, 6-252
rceps 4-23, 4-24, 6-9, 6-253
real cepstrum 6-253

defined 4-24
reconstructing signal (minimum-phase) 4-25

rectangular window 2-19, 4-2, 6-27
rectpuls 6-2, 6-254
recursive filter. See IIR filter
references 1-46, 3-26, 4-39
reflection coefficients 1-37, 1-39, 6-234, 6-252
remez 2-17, 2-22, 6-5, 6-255

accessing from Filter Designer 5-55, 5-63, 5-65
compared to firls 2-23
filter characteristics 6-260
for differentiator design 2-26



Index
for Hilbert transformer design 2-25
order estimation 6-263
weight vector 2-24

Remez exchange algorithm 2-22, 6-255
remezord 2-17, 6-5, 6-263

accessing from Filter Designer 5-65
resample 6-9, 6-267
resampling 4-20, 6-267

in FIR filtering 1-19
See also decimation, interpolation

residue 1-41, 1-42
residue form. See partial fraction form
residuez 1-42, 6-3, 6-271
Revert panel 5-30
ripple, passband 5-62
roots

of Bessel filter 6-15
polynomial 1-33

roots 1-33, 1-42
ruler color 5-22
Ruler Color edit box, in Preferences dialog box 

5-22
Ruler Marker pop-up menu, in Preferences dialog 

box 5-22
ruler markers 5-22, 5-35
ruler type

in Signal Browser 5-22
in Spectrum Viewer 5-22

rulers
bringing to center 5-34
customizing in SPTool 5-21
dragging 5-35
find ruler buttons 5-34
horizontal 5-35
horizontal mode 5-39
in Filter Viewer 5-27, 5-32
in Signal Browser 5-21, 5-22, 5-24, 5-32

in Spectrum Viewer 5-21, 5-22, 5-25, 5-32
parameters 5-36
positioning 5-37
preferences 5-22
saving measurements 5-36
slope 5-35
slope mode 5-41
track 5-35
track mode 5-40
vertical 5-35
vertical mode 5-38

Rulers check box, in Preferences dialog box 5-24, 
5-25, 5-27

S
sampling frequency

changing in SPTool 5-11
in SPTool 5-17

Sampling Frequency edit box, in Import dialog box 
5-6, 5-11

Sampling Frequency menu item 5-17
sampling rate

changing by noninteger factor 4-20, 6-267
changing for irregularly spaced data 4-22
changing with upfirdn 1-19
decreasing by integer factor 6-94
increasing by integer factor 6-182

Save Rulers button 5-36
Save Session menu item 5-7
saving changes in SPTool 5-29
saving data, from Filter Designer 5-53, 5-69, 5-98
saving settings, in Filter Viewer 5-76
sawtooth 1-8, 6-2, 6-274
sawtooth wave 1-8
I-21
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I-22
scalar
for state-space form 1-34
representing gain 1-33

Scale pop-up menu, Filter Viewer 5-77
Search for Plug-Ins at start-up check box, in Pref-

erences dialog box 5-29
second-order sections 1-42
second-order sections form 1-37

converting to state-space 6-278
converting to transfer function 6-280
converting to zero-pole-gain 6-282
defined 1-37
in SPTool 5-13

selecting data objects in SPTool 5-15
settings

restoring in SPTool 5-29
rulers 5-22
saving in Signal Browser 5-43
saving in SPTool 5-30

signal
adding noise 1-6
analytic 4-37, 6-170
carrier 4-28, 6-98
complex 5-45
continuous (analog) 1-2
differentiation 2-26
discrete (digital) 1-2
generating 1-7
importing into SPTool 5-5, 5-8, 5-10, 5-12
linking to spectrum 5-90
measurements 5-37
measurements in Signal Browser 5-35
message 4-28, 6-218
multichannel 3-4
naming in SPTool 5-17
peaks 5-36
playing 5-43
plotting 1-6
reconstruction

from DCT coefficients 4-36
minimum phase 4-25, 6-253

representing
in MATLAB 1-4
multichannel 1-4
single channel 1-4

selecting in Signal Browser 5-46
valleys 5-36
viewing in Signal Browser 5-17, 5-45
See also waveform

Signal Browser 5-2, 5-17, 5-42, 6-289
activating 5-17, 5-42
customizing 5-21
window 5-42

Signal Processing Toolbox 1-2
signal type

array 5-15
vector 5-15

sigprefs.mat 5-30
sinc 1-10, 6-2, 6-275

bandlimited interpolation example 6-276
sinc function 1-10, 6-275

and bandlimited interpolation 6-276
basic example 1-11
defined 1-10

sinusoidal wave 1-9
Slepian sequences. See discrete prolate spheroidal 

sequences
Slope button, for rulers 5-35
Slope control 5-37, 5-40
sonar applications 4-26
sos2ss 1-42, 6-3, 6-278
sos2tf 1-42, 6-3, 6-280
sos2zp 1-42, 6-3, 6-282



Index
specgram 4-26, 6-9, 6-284
example 4-26, 6-322

specification lines 5-68
dragging to edit filter 5-62

specifications for filter design 2-7
spectral analysis 3-5

cross spectral density 3-13
defined 3-5
power spectral density 3-5
using Spectrum Viewer 5-88
Yule-Walker AR method 4-11

spectral density 3-5
See also power spectral density, cross spectral 

density
spectral density plot

in Spectrum Viewer 5-92
spectrogram 4-26, 6-284

example 4-26, 6-322
spectrum

computing in SPTool 5-19, 5-20
importing into SPTool 5-8, 5-10, 5-13
linking to signal 5-90
measurements 5-37
measurements in Spectrum Viewer 5-35, 5-92
naming in SPTool 5-17
peaks 5-36
updating in SPTool 5-20
valleys 5-36
viewing in Spectrum Viewer 5-88
viewing in SPTool 5-20

spectrum type, auto 5-15
Spectrum Viewer 5-3, 5-19, 5-88, 6-292

activating 5-19, 5-88
changing plot properties 5-93
customizing 5-21
default plot 5-93
setting confidence intervals 5-98

viewing power spectral density plots 5-93
window 5-89

speech processing 4-10, 4-21
spline 4-22
spt extension 5-7
SPTool 5-2, 6-289

activating from Signal Browser 5-53
closing 5-7
customizing 5-7, 5-21
loading 5-4
preferences 5-7
window 5-6

sptool command 6-10, 6-289
square 1-8, 6-2, 6-293
square wave 1-8
ss2sos 1-42, 6-4, 6-294
ss2tf 6-297
ss2tf 1-42, 6-297
ss2zp 1-42, 6-4, 6-298
stabilization, polynomial 6-236
standards

Compact Disc 4-20
Digital Audio Tape 4-20

startup transients 1-22
reducing 1-21, 6-134

state-space form 1-40, 1-42
converting to second-order section 6-294
converting to zero-pole-gain 6-298
defined 1-34
in SPTool 5-13
representing in MATLAB 1-34

statistical operations 3-2
Stay in Zoom-mode After Zoom check box, in Pref-

erences dialog box 5-24, 5-25, 5-27, 5-28
Steiglitz-McBride iteration 6-301
Steiglitz-McBride method 4-14
I-23
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I-24
step response 5-18
viewing in Filter Viewer 5-87

Step Response check box, Filter Viewer 5-77
step response plot 5-77, 5-87
stmcb 2-5, 4-10, 4-14, 6-8, 6-301
stopband

attenuation, setting in Filter Designer 5-62
equiripple 2-10

strip plot 6-304
defined 6-304

strips 6-2, 6-304
structure, digital filter

lattice 1-37
transposed direct form II 1-17

subplots 5-74
in Filter Viewer 5-76

subspace thresholds, controlling in pmusic func-
tion 3-24

svd, in pmusic function 3-24
swept-frequency cosine generator. See chirp
system identification 4-13
system models 1-32

and bilinear transformation 2-43
and filter design functions 2-7
and frequency transformation functions 2-39

T
tapers, in PSD estimates 3-16
taps 2-17
texts, related 1-46
tf2latc 1-39, 1-42, 6-4, 6-306
tf2ss 1-42, 6-4, 6-307
tf2zp 6-309
tf2zp 1-42, 6-299, 6-309
tfe 3-6, 3-14, 6-7, 6-311
thresh 3-24
tiling 5-79
tiling display, in Filter Viewer 5-27
tiling preferences, in Filter Viewer 5-21
Time Response Length edit box, in Preferences dia-

log box 5-26
time response length, in Filter Viewer 5-26
time vector 1-6

returned by modulate 4-29
time-dependent Fourier transform 4-26
time-domain analysis, in Filter Viewer 5-74
time-domain based modeling. See parametric 

modeling
toolbox

Control Systems Toolbox 1-35, 6-181, 6-300
Image Processing Toolbox 6-93, 6-173, 6-217
Signal Processing Toolbox 1-2
Symbolic Math Toolbox 6-15
System Identification Toolbox 6-214, 6-303, 

6-314
Track button, for rulers 5-35, 5-37, 5-39
transfer function 1-32, 1-35, 1-40, 1-42

coefficients 1-15
converting to state-space 6-307
defined 1-15
derivation 1-15
estimate from input and output 6-311
estimating using Welch’s method 3-14
factored form 1-33
for analog filter 1-41
representing in MATLAB 1-32
specifying in SPTool 5-13
zero-pole-gain form 1-33

transform 4-33
chirp z-transform (CZT) 4-33, 6-89
discrete cosine 6-92
discrete Fourier 1-43
Hilbert 4-37, 6-170



Index
inverse discrete cosine 4-35, 6-173
inverse discrete Fourier 6-175

transformations
between system models 1-41
bilinear 2-42, 6-20
frequency 2-38, 6-202, 6-205, 6-207, 6-209

transition band 2-23
transposed direct form II 6-130

initial conditions 6-135
trend, removing 6-101
triang 4-2, 6-7, 6-315

compared to bartlett 6-13
example 4-2

triangular window 6-315
tripuls 6-2, 6-316
two-dimensional operations

autocorrelation 6-329
convolution 6-70

obtaining subsection 6-70
cross-correlation 6-329
discrete Fourier transform 1-45, 6-126
filtering 6-133
inverse discrete Fourier transform 1-45, 6-176

two-dimensional signal processing, with fft2 and 
ifft2 1-45

U
unit circle 6-236
unit impulse function 1-7
unit ramp function 1-7
unit sample, multichannel representation 1-7
unit step function 1-7
unwrap 1-27, 6-3, 6-317
Update button 5-20, 5-88
upfirdn 1-19, 4-22, 6-9, 6-318

V
Valleys button, Signal Browser 5-36
variance

of correlation sequence estimate 3-4
of power spectrum estimate 3-8

vco 4-28, 4-30, 6-9, 6-322
vector

data 1-4
display, in Signal Browser 5-48
for filter coefficients 1-16, 1-32
frequency 2-24, 6-141, 6-144, 6-256, 6-333
in SPTool 5-15
indexing xvii, 1-15
magnitude 2-24, 6-141, 6-144, 6-333
time 1-6
weighting 2-24, 6-151, 6-256

Vertical button, for rulers 5-35, 5-37
View button 5-17, 5-20
voltage controlled oscillator 4-30, 6-322

W
waveform

aperiodic 1-9
chirp
chirp, example 1-9
from sinusoids 1-6
generating with diric function 1-12
generating with pulstran 1-10
generating with sinc function 1-10
linear swept-frequency cosine. See chirp
periodic 1-8
sawtooth 1-8, 6-274

example 1-8
sinusoidal pulse, Gaussian-modulated 1-9
square 1-8, 6-293
triangle 6-274
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I-26
Welch’s method 3-6
bias 3-11
compared to the Burg method 3-22
compared to the MTM method 3-19
compared to the Yule-Walker AR method 

3-20
for cross spectral density estimation 3-13, 

6-87
for nonparametric system identification 3-14
for power spectral density estimation 3-5, 3-10, 

6-68, 6-242
in Spectrum Viewer 5-97
normalization 3-11

white noise 1-6
window

applied to periodogram 3-9
Bartlett 4-2, 6-13
Blackman 4-4, 6-25
boxcar 2-19
Chebyshev 4-9, 6-50
for filter design 2-19
generalized cosine 4-4
Hamming 2-20, 4-4, 6-168
Hanning 4-4, 6-169
Kaiser 4-4, 6-193
rectangular 2-19, 6-27
shapes, overview 4-2
specifying for fir1 2-21
triangular 6-315

window method
FIR filter design 2-18

multiband design 2-21
single band design 2-20

window method, FIR filter design
bandpass configuration 6-137
bandstop configuration 6-137
highpass configuration 6-137
lowpass configuration 6-137
Workspace Contents list, in Import dialog box 5-9
workspace, loading variables from 5-9

X
X Label edit box, in Preferences dialog box 5-24
xcorr 3-2, 6-7, 6-324

and parametric modeling 4-12
xcorr2 6-7, 6-329
xcov 3-2, 6-7, 6-330

Y
Y Label edit box, in Preferences dialog box 5-24
Yule AR method, in Spectrum Viewer 5-97
yulewalk 2-5, 2-13, 4-11, 6-4, 6-333

example 2-14
Yule-Walker AR method 3-5, 3-6, 3-19, 4-11

compared to Welch’s method 3-20
defined 3-19
example 3-20

Yule-Walker equations 2-13
Yule-Walker filter design 6-333

Z
zero frequency component, centering with fftshift 

1-45
zero-order hold. See averaging filter
zero-phase filtering 6-134
zero-pole analysis

example 1-30
zero-pole plots 6-341

zero-pole gain 1-42
zero-pole plot 5-77, 5-85

viewing in Filter Viewer 5-85



Index
zero-pole-gain form 1-40
converting to second-order section 6-336
converting to state-space 6-339
defined 1-33
in SPTool 5-13
representing in MATLAB 1-33

zeros and poles 5-18
in transfer function 1-33

Zeros and Poles check box, Filter Viewer 5-77
zoom controls

in Filter Designer 5-30
in Filter Viewer 5-30
in Signal Browser 5-30
in Spectrum Viewer 5-30
in SPTool 5-30

Zoom In-X button 5-31
Zoom In-Y button 5-31
Zoom Out-X button 5-31
Zoom Out-Y button 5-31
zoom persistence 5-31

changing 5-31
in Filter Designer 5-28
in Filter Viewer 5-27, 5-78
in Signal Browser 5-24, 5-44
in Spectrum Viewer 5-25

zooming
in Filter Designer 5-67
in Filter Viewer 5-78
in Signal Browser 5-44
in Spectrum Viewer 5-93
one-time 5-31
persistent 5-31

zp2sos 1-42, 6-4, 6-336
zp2ss 1-42, 6-4, 6-339
zp2tf 6-340
zp2tf 1-42, 6-309, 6-340
zplane 1-30, 6-3, 6-341

z-transform 1-15, 1-32
chirp z-transform (CZT) 4-33, 6-89
discrete Fourier transform 1-43
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